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Egyptian Fractions
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Egyptian Fractions

Any positive rational a/n can be written as the sum of positive unit
fractions

a
n
=

1
m1

+
1

m2
+ · · ·+ 1

mk
.

The above is an example of an Egyptian fraction decomposition of
length k .

Here’s an example of length 5:

867
5309

=
1
7
+

1
49

+
1

23650
+

1
683592739

+
1

4205691294638106350
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Erdős–Straus conjecture

Conjecture
There exist positive integers m1,m2,m3 such that

4
n
=

1
m1

+
1

m2
+

1
m3

.

For example:

4
8675309

=
1

2168828
+

1
6271751022618

+
1

59002291334558621370338268

It has been verified for n ≤ 1014.
The set of exceptions has density 0. (Vaughan 1970)
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Averaging

Since we can’t prove it, let’s average!

Theorem (Elshotz–Tao (2013))
Let

f (n) = #

{
(m1,m2,m3) ∈ N3 :

4
n
=

1
m1

+
1

m2
+

1
m3

}
,

then
x log2 x �

∑
p≤x

f (p)� x log2 x log log x .
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Functions we want to estimate

Ak (n) = #

{
a ∈ N :

a
n
=

1
m1

+
1

m2
+ · · ·+ 1

mk

}
.

A∗
k (n) = #

{
a ∈ N : gcd(a,n) = 1,

a
n
=

1
m1

+
1

m2
+ · · ·+ 1

mk

}
.

fa(n) = #

{
(m1,m2,m3) ∈ N3 :

a
n
=

1
m1

+
1

m2
+

1
m3

}
.

F (n) = #

{
(a,m1,m2,m3) ∈ N4 :

a
n
=

1
m1

+
1

m2
+

1
m3

}
.
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Length 2

Ak (n) = #

{
a ∈ N :

a
n
=

1
m1

+
1

m2
+ · · ·+ 1

mk

}
.

A∗
k (n) = #

{
a ∈ N : gcd(a,n) = 1,

a
n
=

1
m1

+
1

m2
+ · · ·+ 1

mk

}
.

Theorem (Croot, Dobbs, Friedlander, Hetzel, Pappalardi (2000))
For any ε > 0,

A∗
2(n)� nε, A2(n)� nε.

Furthermore
x log3 x �

∑
n≤x

A∗
2(n)� x log3 x ,

and
x log4 x �

∑
n≤x

A2(n)� x log4 x .
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Length 3, averaging over primes

Ak (n) = #

{
a ∈ N :

a
n
=

1
m1

+
1

m2
+ · · ·+ 1

mk

}
.

Theorem (Luca–Pappalardi (2019))

x log3 x �
∑
p≤x

A3(p)� x log5 x .
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A3(n)

Theorem (Croot, Dobbs, Friedlander, Hetzel, Pappalardi (2000))
For any ε > 0,

A3(n)� n
1
2+ε.

Theorem (Banderier, Gómez Ruiz, Luca, Pappalardi, Treviño)

Let h(n) = C/ log log n, where C = 2 log(48) log(log(6983776800))
log(6983776800) ≈ 1.066.

Then
A3(n) ≤ 10n

1
2+

13
4 h(n) log n.

Corollary

For n ≥ 101023
,

A3(n) ≤
1

100
n

1
2+

1
15 .
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fa(n)

fa(n) = #

{
(m1,m2,m3) ∈ N3 :

a
n
=

1
m1

+
1

m2
+

1
m3

}
.

Theorem (Elshotz–Tao (2013))

f4(p)� p
3
5+o(1).

Theorem (Banderier, Gómez Ruiz, Luca, Pappalardi, Treviño)
For any ρ,

fa(n) ≤ nε
(

n
1
2+

ρ
2

a
+ n1−ρ

)
.

Therefore,

fa(n)�
n

2
3+ε

a
2
3

.
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Explicit fa(n)

Theorem (Banderier, Gómez Ruiz, Luca, Pappalardi, Treviño)
For any ρ, Let 1/3 ≤ ρ, and n ≥ 11000. Then

fa(n) ≤ 6n5h(n)

(
6
√

2
n1/2+ρ/2

a
10h(n) +

3
2

n1−ρ log n 6h(n)

)
. (1)

Corollary

If n ≥ 101023
, then

fa(n) <
1

100
n

1
10

(
n1/2+ρ/2

a
+ n1−ρ

)
.
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F (n)

F (n) = #

{
(a,m1,m2,m3) ∈ N4 :

a
n
=

1
m1

+
1

m2
+

1
m3

}
.

Theorem (Banderier, Gómez Ruiz, Luca, Pappalardi, Treviño)
Let ε > 0, then

F (n)� n
5
6+ε.

This implies that for large enough n, F (n) < n. This suggests the
question, what is the largest n such that F (n) ≥ n.
The first values for which F (n) < n are:
F (8821) = 8590,F (11161) = 10270,F (11941) = 10120.
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Explicit F (n)

Theorem (Banderier, Gómez Ruiz, Luca, Pappalardi, Treviño)

For n ≥ 101023
.

F (n) ≤ 1
10

n
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Number Theory in the Americas
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Parametrization Lemma

Lemma (Luca, Pappalardi)
Consider an Egyptian fraction decomposition of the irreducible fraction
a/n:

a
n
=

1
m1

+
1

m2
+

1
m3

with gcd(a,n) = 1 (2)

Then there exist integers D1,D2,D3, v1, v2, v3 with
(i) lcm(D1,D2,D3) | n and gcd(D1,D2,D3) = 1;
(ii) av1v2v3 | D1v1 + D2v2 + D3v3 and gcd(vi ,Djvj) = 1 when i 6= j ,

and the denominators of the Egyptian fractions are given by

mi =
n(D1v1 + D2v2 + D3v3)

aDivi
. (3)

Conversely, if conditions (i)–(ii) are fulfilled, then the mi ’s defined via (3)
are integers, and denominators of k unit fractions summing to a/n.
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Thank you!
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