
Recent Work on the Erdős-Selfridge Function
g(k)

Brianna Sorenson1, Jon Sorenson2, and Jonathan Webster2

Butler University, USA
bsorenso@butler.edu, sorenson@butler.edu, jewebste@butler.edu

50th West Coast Number Theory 2019, Pacific Grove, CA

1. Supported by the Butler Summer Institute
2. Supported by a grant from the Holcomb Awards Committee

Available at https://arxiv.org/abs/1907.08559

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 1 / 42

The Erdős-Selfridge Function

Definition:
Let lpf (n) be the least prime factor of the integer n.

Then g(k) is the smallest integer, with g(k) > k + 1, such that

lpf
((

g(k)
k

))
> k.

Why?
Paul Erdős posed the g(k) problem in 1969.
It’s in the Online Encyclopedia of Integer Sequences:
OEIS A003458

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 2 / 42

Examples of g(k) using Pascal’s Triangle

k = 0 1 2 3 4 5 6 7
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

g(1) = 3 since 3 > 1 + 1 and
(3

1
)

= 3 with lpf (3) = 3 > 1.

g(2) = 6 since 6 > 2 + 1 and
(6

2
)

= 15 with lpf (15) = 3 > 2.

g(3) = 7 since 7 > 3 + 1 and
(7

3
)

= 35 with lpf (35) = 5 > 3.

g(4) = 7 since 7 > 4 + 1 and
(7

4
)

= 35 with lpf (35) = 5 > 4.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 3 / 42

Examples of g(k) using Pascal’s Triangle

k = 0 1 2 3 4 5 6 7
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

g(1) = 3 since 3 > 1 + 1 and
(3

1
)

= 3 with lpf (3) = 3 > 1.

g(2) = 6 since 6 > 2 + 1 and
(6

2
)

= 15 with lpf (15) = 3 > 2.

g(3) = 7 since 7 > 3 + 1 and
(7

3
)

= 35 with lpf (35) = 5 > 3.

g(4) = 7 since 7 > 4 + 1 and
(7

4
)

= 35 with lpf (35) = 5 > 4.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 3 / 42

Examples of g(k) using Pascal’s Triangle

k = 0 1 2 3 4 5 6 7
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

g(1) = 3 since 3 > 1 + 1 and
(3

1
)

= 3 with lpf (3) = 3 > 1.

g(2) = 6 since 6 > 2 + 1 and
(6

2
)

= 15 with lpf (15) = 3 > 2.

g(3) = 7 since 7 > 3 + 1 and
(7

3
)

= 35 with lpf (35) = 5 > 3.

g(4) = 7 since 7 > 4 + 1 and
(7

4
)

= 35 with lpf (35) = 5 > 4.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 3 / 42

Examples of g(k) using Pascal’s Triangle

k = 0 1 2 3 4 5 6 7
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

g(1) = 3 since 3 > 1 + 1 and
(3

1
)

= 3 with lpf (3) = 3 > 1.

g(2) = 6 since 6 > 2 + 1 and
(6

2
)

= 15 with lpf (15) = 3 > 2.

g(3) = 7 since 7 > 3 + 1 and
(7

3
)

= 35 with lpf (35) = 5 > 3.

g(4) = 7 since 7 > 4 + 1 and
(7

4
)

= 35 with lpf (35) = 5 > 4.
Sorenson, Sorenson, & Webster Erdős-Selfridge Function 3 / 42

Computational Results: Ecklund, Erdős, Selfridge (1974)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 4 / 42

g(k) is troublesome

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 5 / 42

More Computations

Scheidler and Williams (1992)
used Kummer’s theorem to
construct a sieve algorithm to
compute g(k) for all k ≤ 140.

Typo:
g(114) = 59819 90286 02614.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 6 / 42

Even More Computations

Lukes, Scheidler, and Williams
(1997) improved their sieve,
used special-purpose hardware,
and computed g(k) for all
k ≤ 200.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 7 / 42

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 8 / 42

99 is Trouble!

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 9 / 42

New Computational Results

We have a new algorithm to compute g(k) in sublinear time.
Our approach is also built on Kummer’s theorem.

We use a space-saving wheel datastructure.
We found g(k) for all k ≤ 272 using one processor,
and for k = 273 to 357+ in parallel (so far).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 10 / 42

Computational Results: Single Core

k g(k)
201 235 54612 35023 12966 07453
202 371 93707 68876 94169 93998
203 36 66628 18040 77694 67119
204 178 22243 70804 75634 88989
205 119 23364 21369 70734 19215
206 118 94994 19601 54916 70238
207 4 14102 11738 06206 56623
208 128 63517 97975 53174 93464
209 40 80254 70430 94462 56859
210 3 81063 47274 59626 93595
211 277 19087 51211 86811 93467
212 254 11430 46501 91044 33623
213 941 02942 94951 13843 10999
214 5 42943 43587 62853 77239
215 1 94050 01839 78664 31743
216 43 71951 29369 55065 01119
217 17 60181 71551 23707 20217
218 40 46933 47457 90358 45374
219 4 60119 05176 06932 47999
220 5 07302 74025 33237 33471
221 11 24738 59029 35409 05471
222 11720 13806 06713 22847
223 29 34696 47028 07658 76223
224 51633 58728 02682 87224
225 12369 18109 50028 52853

k g(k)
226 1 33170 49136 16068 80243
227 25 43371 29078 24284 53367
228 4 42953 79137 83327 73614
229 74 31339 46454 40891 68359
230 1795 17836 21533 83405 06863
231 1535 32995 48871 64662 39991
232 111 43965 49911 64968 95483
233 20200 73550 49977 05129 39243
234 9141 02029 72226 64023 95374
235 3353 56843 86952 45592 15615
236 9004 68924 26010 08758 44863
237 128 10339 84890 50088 80623
238 797 67177 19809 53861 33999
239 18991 37758 35752 30838 29999
240 179 81118 13875 42559 25240
241 50194 81877 83204 04927 52119
242 1 05794 00205 01218 84737 54618
243 1675 50917 78080 00171 78623
244 7032 91964 49292 36074 24244
245 35619 19278 93870 30042 55997
246 57819 80943 94360 21432 63998
247 8791 54436 07103 73768 64247
248 1028 52788 08587 24965 75999
249 14 56775 25795 65720 74749
250 276 46926 37489 69206 77374

k g(k)
251 3056 66797 58148 26766 11579
252 10505 00162 90998 95371 30494
253 3103 09358 30344 20590 94269
254 1166 62737 17826 44531 56094
255 1021 56121 82556 87267 01055
256 128 22340 15164 11349 38548
257 7712 29340 10480 52695 50483
258 58587 79034 00801 08562 54858
259 28954 56510 29429 20300 85999
260 9052 78792 60680 37520 93549
261 3752 17161 28291 37355 29917
262 370 44716 59526 93861 95399
263 52789 04430 06789 43127 33639
264 34644 90142 64935 39757 27919
265 29014 53224 87882 19896 83691
266 45629 29239 07110 01927 14698
267 8235 39060 08758 91988 86219
268 68 39739 60096 00722 01118
269 1 61558 09307 54284 34696 01199
270 17012 60056 85638 85052 85598
271 2 37245 88062 88508 66946 32223
272 57 61284 34192 78614 55093 37498

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 11 / 42

Computational Results: Cluster with 192 Cores

k g(k)
272 57 61284 34192 78614 55093 37498
273 11 93755 72096 07235 88168 84023
274 2 88454 13176 35913 24169 68574
275 17152 34131 63802 94572 85911
276 88030 17168 24411 10341 86038
277 453 93397 13957 10829 21927 70333
278 39 50539 72728 23202 00849 01718
279 2 66648 13175 24792 99862 36799
280 70874 78896 73459 57906 03609
281 123 66293 54022 28562 17374 11069
282 7 38297 70384 67082 65425 71838
283 37813 55429 48519 12235 53898 37243
284 6100 10364 48359 18395 19770 39199
285 78766 18312 18052 31134 42561 68735
286 747 51565 01679 14418 20981 52223
287 992 72191 61150 70855 53665 86719
288 5090 76951 48442 32227 73921 76099
289 4834 99245 99858 90424 83401 35289
290 580 10024 22391 77582 79250 69666
291 209 69391 29197 03178 94977 03719
292 174 18908 52958 77197 48733 28493
293 16639 09980 87532 46018 20569 16799
294 20223 01592 35223 93093 61644 12799
295 14858 57580 15296 66376 70445 68447
296 41418 90259 64755 93533 87671 33096
297 2412 51951 98121 56990 65688 86073
298 25619 63627 54642 94279 56273 35598
299 1832 43102 56640 25079 58634 93499
300 701 85519 63812 11947 39815 22430

k g(k)
301 113 92964 05228 07857 10715 23117
302 1742 88530 64455 07964 88047 54943
303 129 26741 47619 33558 63300 61679
304 13 26053 17393 60472 36038 80314
305 1 72946 53384 73935 85567 11859
306 3 51841 28928 12034 40626 05307
307 1779 34819 88869 76850 45198 63743
308 563 71964 39859 00813 40202 10998
309 98 07021 15457 23811 10525 81749
310 1 24437 81505 29347 17696 51070
311 1560 53896 22680 68278 05256 06711
312 1796 99278 95512 29968 42460 24124
313 3 00996 54176 68374 47827 87101 84313
314 1 87014 93014 72478 06122 67573 88094
315 1361 11485 02742 01184 89157 03743
316 1 03374 01931 39808 86145 47639 65949
317 68 85447 25707 42253 40215 24113 79199
318 6 86881 00807 03611 96229 81358 41598
319 11 86184 98065 18829 52817 06712 46719
320 1 40079 84256 27063 06819 06499 16746
321 2435 79072 21965 54229 62339 49121
322 15 25966 57699 53539 87155 01511 11623
323 1 69829 77104 46041 21145 63251 22499
324 2 63741 60892 64064 50498 97681 38599
325 4 61167 55159 08879 62071 94084 17237
326 3 98508 97267 68151 31902 68129 69326
327 80125 12464 39084 44313 42285 17847
328 25358 25141 13174 63981 15617 02348
329 27539 98951 79861 74202 62006 60349
330 736 38290 36775 34959 12602 87866

k g(k)
331 20 99993 85982 46331 44915 31985 15583
332 1 56353 98925 25226 59787 39317 38108
333 8456 75301 70500 03521 07482 84239
334 53204 32892 68314 42061 49241 71599
335 22796 62357 31196 28995 02247 14111
336 349 35354 92097 35618 92451 13714
337 8 11762 65164 78657 57300 21300 74967
338 9 25106 21191 02282 31521 77652 84338
339 2 13133 77351 76125 57319 62221 93619
340 94762 09789 37827 81019 73160 52471
341 14699 48703 85053 43492 43211 94997
342 13442 11412 62865 55639 32278 13718
343 29494 38065 34718 67793 30339 89119
344 1438 56418 63105 76769 23108 10974
345 815 08296 83685 96664 34364 17497
346 193 67357 40155 38474 19752 26746
347 12044 06321 00589 22956 10198 04123
348 4245 11428 30357 75316 13573 01599
349 1 81690 93222 39869 99065 49003 41599
350 1 09702 38255 35035 97742 40622 77982
351 1 09702 38255 35035 97742 40622 77983
352 4660 85432 99042 93285 18996 37232
353 148 50654 32318 56407 35281 78906 02479
354 24 43080 13874 67081 98567 94505 54234
355 50 76963 11372 13168 17954 82711 30491
356 9 29253 34900 21677 69458 86574 61236
357 2 80803 34667 27432 75770 65998 07359

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 12 / 42

Webster’s Conjecture

Webster’s Conjecture (2019)

g(k) + 1 = g(k + 1) infinitely often.

g(2) + 1 = g(3) = 7
g(10) + 1 = g(11) = 47
g(18) + 1 = g(19) = 2099
g(36) + 1 = g(37) = 152189
g(350) + 1 = g(351) = 1097023825535035977424062277983

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 13 / 42

Computational Results - So Far

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 14 / 42

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 15 / 42

Kummer’s Theorem

Theorem (Kummer).

Let k < n be positive integers, and let p be a prime ≤ k.
Let t ≥ blogp kc+ 1 be an integer and write

k =
t∑

i=0
ai pi and n =

t∑
i=0

bi pi

as the base-p representations of k and n, respectively.
Then p does not divide

(n
k
)

iff bi ≥ ai for all i ≤ t.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 16 / 42

Kummer’s Theorem - Examples

k = 10, n = 12, p = 5:
k = 205, n = 225 so 5 does not divide

(12
10
)

= 66.

k = 10, n = 12, p = 3:
k = 1013, n = 1103 so 3 does divide

(12
10
)

= 66.

Idea:
For each p ≤ k, we get a list of acceptable residues modulo
pblogp kc+1.
Combine these residues modulo

Mk :=
∏
p≤k

pblogp kc+1

using the Chinese remainder theorem to create a sieve problem.
g(k) is the smallest acceptable residue modulo Mk with
g(k) > k + 1.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 17 / 42

Kummer’s Theorem - Examples

k = 10, n = 12, p = 5:
k = 205, n = 225 so 5 does not divide

(12
10
)

= 66.

k = 10, n = 12, p = 3:
k = 1013, n = 1103 so 3 does divide

(12
10
)

= 66.

Idea:
For each p ≤ k, we get a list of acceptable residues modulo
pblogp kc+1.
Combine these residues modulo

Mk :=
∏
p≤k

pblogp kc+1

using the Chinese remainder theorem to create a sieve problem.
g(k) is the smallest acceptable residue modulo Mk with
g(k) > k + 1.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 17 / 42

Kummer’s Theorem - Examples

k = 10, n = 12, p = 5:
k = 205, n = 225 so 5 does not divide

(12
10
)

= 66.

k = 10, n = 12, p = 3:
k = 1013, n = 1103 so 3 does divide

(12
10
)

= 66.

Idea:
For each p ≤ k, we get a list of acceptable residues modulo
pblogp kc+1.
Combine these residues modulo

Mk :=
∏
p≤k

pblogp kc+1

using the Chinese remainder theorem to create a sieve problem.

g(k) is the smallest acceptable residue modulo Mk with
g(k) > k + 1.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 17 / 42

Kummer’s Theorem - Examples

k = 10, n = 12, p = 5:
k = 205, n = 225 so 5 does not divide

(12
10
)

= 66.

k = 10, n = 12, p = 3:
k = 1013, n = 1103 so 3 does divide

(12
10
)

= 66.

Idea:
For each p ≤ k, we get a list of acceptable residues modulo
pblogp kc+1.
Combine these residues modulo

Mk :=
∏
p≤k

pblogp kc+1

using the Chinese remainder theorem to create a sieve problem.
g(k) is the smallest acceptable residue modulo Mk with
g(k) > k + 1.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 17 / 42

Example with k = 10

p = 2, k = 10102:
10102, 10112, 11102, 11112
(4 residues mod 24 = 16)

p = 3, k = 1013:
1013, 1023, 1113, 1123, 1213, 1223, 2013, 2023, 2113, 2123, 2213, 2223
(12 residues mod 33 = 27)

p = 5, k = 205:
205, 215, 225, 235, 245, 305, 315, 325, 335, 345, 405, 415, 425, 435, 445
(15 residues mod 52 = 25)

p = 7, k = 137:
137, 147, 157, 167, 237, 247, 257, 267, 337, 347, 357, 367, 437, 447, 457,
467, 537, 547, 557, 567, 637, 647, 657, 667
(24 residues mod 72 = 49)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 18 / 42

Algorithm Example with k = 10

M10 = 16 · 27 · 25 · 49 = 529200.
R10 := 4 · 12 · 15 · 24 = 17280 is too many residues to check.

We estimate that g(10) ≤ 306.27. (roughly k ·Mk/Rk)
We will look modulo N = 24 · 3 · 7 = 336, which divides Mk , and
search among the residues modulo 336 instead:

10, 11, 14, 15 modulo 16
1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.
We use a wheel data structure to do this efficiently.
How did we pick N = 336?

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 19 / 42

Algorithm Example with k = 10

M10 = 16 · 27 · 25 · 49 = 529200.
R10 := 4 · 12 · 15 · 24 = 17280 is too many residues to check.
We estimate that g(10) ≤ 306.27. (roughly k ·Mk/Rk)

We will look modulo N = 24 · 3 · 7 = 336, which divides Mk , and
search among the residues modulo 336 instead:

10, 11, 14, 15 modulo 16
1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.
We use a wheel data structure to do this efficiently.
How did we pick N = 336?

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 19 / 42

Algorithm Example with k = 10

M10 = 16 · 27 · 25 · 49 = 529200.
R10 := 4 · 12 · 15 · 24 = 17280 is too many residues to check.
We estimate that g(10) ≤ 306.27. (roughly k ·Mk/Rk)
We will look modulo N = 24 · 3 · 7 = 336, which divides Mk , and
search among the residues modulo 336 instead:

10, 11, 14, 15 modulo 16
1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.

We use a wheel data structure to do this efficiently.
How did we pick N = 336?

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 19 / 42

Algorithm Example with k = 10

M10 = 16 · 27 · 25 · 49 = 529200.
R10 := 4 · 12 · 15 · 24 = 17280 is too many residues to check.
We estimate that g(10) ≤ 306.27. (roughly k ·Mk/Rk)
We will look modulo N = 24 · 3 · 7 = 336, which divides Mk , and
search among the residues modulo 336 instead:

10, 11, 14, 15 modulo 16
1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.
We use a wheel data structure to do this efficiently.

How did we pick N = 336?

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 19 / 42

Algorithm Example with k = 10

M10 = 16 · 27 · 25 · 49 = 529200.
R10 := 4 · 12 · 15 · 24 = 17280 is too many residues to check.
We estimate that g(10) ≤ 306.27. (roughly k ·Mk/Rk)
We will look modulo N = 24 · 3 · 7 = 336, which divides Mk , and
search among the residues modulo 336 instead:

10, 11, 14, 15 modulo 16
1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.
We use a wheel data structure to do this efficiently.
How did we pick N = 336?

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 19 / 42

Knapsack

Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.

For a ring with modulus pe and r(p, e) residues,
Ring Size := log(pe) = e log p.
Ring Value := log(pe/r(p, e)) = e log p − log r(p, e).

These definitions lead to minimizing the number of residues to
check modulo N.
Prime splitting is choosing the best e for each p to maximize
the Value/Size ratio.
Our greedy knapsack algorithm picks the rings of highest
value such that the sum of the sizes is roughly log N. For
k = 10 we’d aim for log N near log 307.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 20 / 42

Knapsack

Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.
For a ring with modulus pe and r(p, e) residues,

Ring Size := log(pe) = e log p.
Ring Value := log(pe/r(p, e)) = e log p − log r(p, e).

These definitions lead to minimizing the number of residues to
check modulo N.
Prime splitting is choosing the best e for each p to maximize
the Value/Size ratio.
Our greedy knapsack algorithm picks the rings of highest
value such that the sum of the sizes is roughly log N. For
k = 10 we’d aim for log N near log 307.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 20 / 42

Knapsack

Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.
For a ring with modulus pe and r(p, e) residues,

Ring Size := log(pe) = e log p.
Ring Value := log(pe/r(p, e)) = e log p − log r(p, e).

These definitions lead to minimizing the number of residues to
check modulo N.

Prime splitting is choosing the best e for each p to maximize
the Value/Size ratio.
Our greedy knapsack algorithm picks the rings of highest
value such that the sum of the sizes is roughly log N. For
k = 10 we’d aim for log N near log 307.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 20 / 42

Knapsack

Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.
For a ring with modulus pe and r(p, e) residues,

Ring Size := log(pe) = e log p.
Ring Value := log(pe/r(p, e)) = e log p − log r(p, e).

These definitions lead to minimizing the number of residues to
check modulo N.
Prime splitting is choosing the best e for each p to maximize
the Value/Size ratio.

Our greedy knapsack algorithm picks the rings of highest
value such that the sum of the sizes is roughly log N. For
k = 10 we’d aim for log N near log 307.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 20 / 42

Knapsack

Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.
For a ring with modulus pe and r(p, e) residues,

Ring Size := log(pe) = e log p.
Ring Value := log(pe/r(p, e)) = e log p − log r(p, e).

These definitions lead to minimizing the number of residues to
check modulo N.
Prime splitting is choosing the best e for each p to maximize
the Value/Size ratio.
Our greedy knapsack algorithm picks the rings of highest
value such that the sum of the sizes is roughly log N. For
k = 10 we’d aim for log N near log 307.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 20 / 42

Knapsack Example with k = 10

p e blogp kc+ 1 r(p, e) filter rate k in base p
2 4 4 4 0.25 10102
3 1 3 2 0.666667 1013
7 1 2 4 0.571429 137
3 3 3 6(12) 0.666667
5 2 2 15 0.6 205
7 2 2 6(24) 0.857143

We ran an algorithm to choose an optimal splitting point (e) for
each prime. Both rings are included as options for the knapsack
algorithm.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 21 / 42

Knapsack Example with k = 280

p e blogp kc+ 1 r(p, e) filter rate k in base p
47 1 2 2 0.0425532 5 : 4547
71 1 2 4 0.056338 3 : 6771
17 2 2 9 0.0311419 16 : 817
41 1 2 7 0.170732 6 : 3441
97 1 2 11 0.113402 2 : 8697
19 2 2 25 0.0692521 14 : 1419

7 3 3 28 0.0816327 5507
149 1 2 18 0.120805 1 : 131149

73 1 2 12 0.164384 3 : 6173
2 5 9 8 0.25 1000110002

151 1 2 22 0.145695 1 : 129151
3 1 6 2 0.666667 1011013

13 2 3 30 0.177515 18713
59 1 2 15 0.254237 4 : 4459

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 22 / 42

The Wheel Data Structure, k = 10

Ring 16:
residue 0 1 2 3 4 5 6 7
admissible 0 0 0 0 0 0 0 0
jump +10 +9 +8 +7 +6 +5 +4 +3
residue 8 9 10 11 12 13 14 15
admissible 0 0 1 1 0 0 1 1
jump +2 +1 +1 +3 +2 +1 +1 +11

Ring 3:
residue 0 1 2
admissible 0 1 1
jump +16 +16 +32

Ring 7:
residue 0 1 2 3 4 5 6
admissible 0 0 0 1 1 1 1
jump +48 +96 +144 +192 +48 +48 +48

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 23 / 42

The Wheel Data Structure Example, k = 10

16 3 7 Filters
k + 2 = 12→ 14 14→ 14 14→ 62 Fails mod 27

+48 = 110 Fails mod 27
+48 = 158 Fails mod 25
+48 = 206 Fails mod 25

+32 = 46 46→ 46 Passes! g(10) ≤ 46
+48 = 94 Don’t bother
+192 = 286 Don’t bother
+48 = 334 Don’t bother

+1 = 15 15→ 31 31→ 31 . . .

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 24 / 42

Algorithm Running Time

Theorem.
Under the assumption of the Uniform Distribution Heuristic (see
the next slide) our new algorithm has a running time of

g(k) exp
[
−c · k log log k

(log k)2 · (1 + o(1))
]

arithmetic operations, for a constant c > 0.

It’s possible to prove a sublinear running time with no assumptions.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 25 / 42

Approximating g(k)

We have Mk =
∏

p≤k pdlogp ke+1.
Rk counts the acceptable residues, modulo Mk .
ĝ(k) := Mk/Rk .

Uniform Distribution Heuristic (UDH)

The Rk acceptable residues are uniformly distributed modulo Mk .

Theorem.
The UDH implies that, with high ”probability”,

ĝ(k)/k < g(k) < ĝ(k) · k,

or
log g(k) = log ĝ(k) + O(log k).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 26 / 42

Approximating g(k)

We have Mk =
∏

p≤k pdlogp ke+1.
Rk counts the acceptable residues, modulo Mk .
ĝ(k) := Mk/Rk .

Uniform Distribution Heuristic (UDH)

The Rk acceptable residues are uniformly distributed modulo Mk .

Theorem.
The UDH implies that, with high ”probability”,

ĝ(k)/k < g(k) < ĝ(k) · k,

or
log g(k) = log ĝ(k) + O(log k).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 26 / 42

Approximating g(k)

We have Mk =
∏

p≤k pdlogp ke+1.
Rk counts the acceptable residues, modulo Mk .
ĝ(k) := Mk/Rk .

Uniform Distribution Heuristic (UDH)

The Rk acceptable residues are uniformly distributed modulo Mk .

Theorem.
The UDH implies that, with high ”probability”,

ĝ(k)/k < g(k) < ĝ(k) · k,

or
log g(k) = log ĝ(k) + O(log k).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 26 / 42

g(k) versus ĝ(k) (logscale)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 27 / 42

Zooming in: for(k=200; k<250; k++)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 28 / 42

Statistical Tests for Uniformity

k Rk Anderson-Darling Kolmogorov-Smirnov
5 80 0.9885 1
6 96 0.9129 0.99
7 1008 1 0.978
8 2304 1 0.901
9 8640 1 0.945

10 17280 0.9989 1
11 285120 – 1
12 518400 – 0.994
13 8087040 – 1
14 9676800 – 1
15 16632000 – 0.998

Thanks to Dr. Rasitha Jayasekare for her help with this.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 29 / 42

Approximating g(k)

Define G(x , k) to be the number of n ≤ x such that
(n

k
)

has no
prime divisors ≤ k.

Theorem.

G(x , k) = x
ĝ(k)(1 + o(1)).

This also suggests that g(k) is near ĝ(k).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 30 / 42

Approximating g(k)

Define G(x , k) to be the number of n ≤ x such that
(n

k
)

has no
prime divisors ≤ k.

Theorem.

G(x , k) = x
ĝ(k)(1 + o(1)).

This also suggests that g(k) is near ĝ(k).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 30 / 42

The Five Conjectures

Ecklund, Erdős, and Selfridge (1974) conjectured the following:

Conjecture g(k) ĝ(k)
(1) lim supk→∞ g(k + 1)/g(k) =∞ ? TRUE
(2) lim infk→∞ g(k + 1)/g(k) = 0 ? ?
(3) g(k) is super-polynomial in k TRUE TRUE
(4) limk→∞ g(k)1/k = 1 ? TRUE
(5) g(k) < exp[ck/ log k] for a constant c > 0 ? TRUE

Granville and Ramaré (1996) proved (3) by showing
g(k)� kc

√
log k/ log log k .

Konyagin (1998) has the best lower bound, g(k)� kc log k .

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 31 / 42

New Results for ĝ(k)

Theorem 1.

lim sup
k→∞

ĝ(k + 1)
ĝ(k) =∞.

We prove the ratio ĝ(k + 1)/ĝ(k)� log k when k + 1 is prime.

Theorem 2.

0.525 . . .+ o(1) ≤ log ĝ(k)
k/ log k ≤ 1 + o(1).

exp(0.525k/ log k) ≤ ĝ(k)1+o(1) ≤ exp(k/ log k).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 32 / 42

New Results for ĝ(k)

Theorem 1.

lim sup
k→∞

ĝ(k + 1)
ĝ(k) =∞.

We prove the ratio ĝ(k + 1)/ĝ(k)� log k when k + 1 is prime.

Theorem 2.

0.525 . . .+ o(1) ≤ log ĝ(k)
k/ log k ≤ 1 + o(1).

exp(0.525k/ log k) ≤ ĝ(k)1+o(1) ≤ exp(k/ log k).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 32 / 42

Upper and lower bounds

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 33 / 42

Main Theorem Proof: Three Amigos

For prime p, write k in base p:

k =
blogp kc∑

i=0
aippi .

ĝ(k) = Mk
Rk

=
∏

p≤k pblogp kc+1∏
p≤k

∏blogp kc
i=0 (p − aip)

=
∏
p≤k

blogp kc∏
i=0

p
p − aip

=
∏

p≤
√

k

blogp kc∏
i=0

p
p − aip

·
∏

√
k<p≤k

p
p − a1p

p
p − a0p

.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 34 / 42

Main Theorem Proof: Three Amigos

For prime p, write k in base p:

k =
blogp kc∑

i=0
aippi .

ĝ(k) = Mk
Rk

=
∏

p≤k pblogp kc+1∏
p≤k

∏blogp kc
i=0 (p − aip)

=
∏
p≤k

blogp kc∏
i=0

p
p − aip

=
∏

p≤
√

k

blogp kc∏
i=0

p
p − aip

·
∏

√
k<p≤k

p
p − a1p

p
p − a0p

.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 34 / 42

Main Theorem Proof: Three Amigos

For prime p, write k in base p:

k =
blogp kc∑

i=0
aippi .

ĝ(k) = Mk
Rk

=
∏

p≤k pblogp kc+1∏
p≤k

∏blogp kc
i=0 (p − aip)

=
∏
p≤k

blogp kc∏
i=0

p
p − aip

=
∏

p≤
√

k

blogp kc∏
i=0

p
p − aip

·
∏

√
k<p≤k

p
p − a1p

p
p − a0p

.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 34 / 42

Main Theorem Proof: Three Amigos

For prime p, write k in base p:

k =
blogp kc∑

i=0
aippi .

ĝ(k) = Mk
Rk

=
∏

p≤k pblogp kc+1∏
p≤k

∏blogp kc
i=0 (p − aip)

=
∏
p≤k

blogp kc∏
i=0

p
p − aip

=
∏

p≤
√

k

blogp kc∏
i=0

p
p − aip

·
∏

√
k<p≤k

p
p − a1p

p
p − a0p

.

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 34 / 42

Main Theorem Proof: Red

∏
p≤
√

k

blogp kc∏
i=0

p
p − aip

≤
∏

p≤
√

k

blogp kc∏
i=0

p

=
∏

p≤
√

k

pblogp kc+1

�
∏

p≤
√

k

k3

= k3·π(
√

k)

� exp 6
√

k(1 + o(1)).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 35 / 42

Main Theorem Proof: Red

∏
p≤
√

k

blogp kc∏
i=0

p
p − aip

≤
∏

p≤
√

k

blogp kc∏
i=0

p

=
∏

p≤
√

k

pblogp kc+1

�
∏

p≤
√

k

k3

= k3·π(
√

k)

� exp 6
√

k(1 + o(1)).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 35 / 42

Main Theorem Proof: Red

∏
p≤
√

k

blogp kc∏
i=0

p
p − aip

≤
∏

p≤
√

k

blogp kc∏
i=0

p

=
∏

p≤
√

k

pblogp kc+1

�
∏

p≤
√

k

k3

= k3·π(
√

k)

� exp 6
√

k(1 + o(1)).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 35 / 42

Main Theorem Proof: Red

∏
p≤
√

k

blogp kc∏
i=0

p
p − aip

≤
∏

p≤
√

k

blogp kc∏
i=0

p

=
∏

p≤
√

k

pblogp kc+1

�
∏

p≤
√

k

k3

= k3·π(
√

k)

� exp 6
√

k(1 + o(1)).

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 35 / 42

Main Theorem Proof: Green

If
√

k < p ≤ k and fix a1p = a, then k/(a + 1) < p ≤ k/a.

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

p
p − a

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

(
1− a

p

)−1

=
b
√

kc∏
a=1

∏
a<p≤k/a

(
1− a

p

)−1

∏
a<p≤k/(a+1)

(
1− a

p

)−1

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 36 / 42

Main Theorem Proof: Green

If
√

k < p ≤ k and fix a1p = a, then k/(a + 1) < p ≤ k/a.

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

p
p − a

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

(
1− a

p

)−1

=
b
√

kc∏
a=1

∏
a<p≤k/a

(
1− a

p

)−1

∏
a<p≤k/(a+1)

(
1− a

p

)−1

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 36 / 42

Main Theorem Proof: Green

If
√

k < p ≤ k and fix a1p = a, then k/(a + 1) < p ≤ k/a.

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

p
p − a

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

(
1− a

p

)−1

=
b
√

kc∏
a=1

∏
a<p≤k/a

(
1− a

p

)−1

∏
a<p≤k/(a+1)

(
1− a

p

)−1

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 36 / 42

Main Theorem Proof: Green

If
√

k < p ≤ k and fix a1p = a, then k/(a + 1) < p ≤ k/a.

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

p
p − a

=
b
√

kc∏
a=1

∏
k/(a+1)<p≤k/a

(
1− a

p

)−1

=
b
√

kc∏
a=1

∏
a<p≤k/a

(
1− a

p

)−1

∏
a<p≤k/(a+1)

(
1− a

p

)−1

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 36 / 42

Main Theorem Proof: Green part 2

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

� log k
log(k/2) ·

(log(k/2)
log(k/3)

)2
·
(log(k/3)

log(k/4)

)3
· · ·

� log k
log
√

k
· log(k/2)

log
√

k
· log(k/3)

log
√

k
· · ·

� 2
√

k .

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 37 / 42

Main Theorem Proof: Green part 2

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

� log k
log(k/2) ·

(log(k/2)
log(k/3)

)2
·
(log(k/3)

log(k/4)

)3
· · ·

� log k
log
√

k
· log(k/2)

log
√

k
· log(k/3)

log
√

k
· · ·

� 2
√

k .

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 37 / 42

Main Theorem Proof: Green part 2

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

� log k
log(k/2) ·

(log(k/2)
log(k/3)

)2
·
(log(k/3)

log(k/4)

)3
· · ·

� log k
log
√

k
· log(k/2)

log
√

k
· log(k/3)

log
√

k
· · ·

� 2
√

k .

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 37 / 42

Main Theorem Proof: Green part 2

∏
√

k<p≤k

p
p − a1p

=
b
√

kc∏
a=1

(c(a) log(k/a))a(1 + o(1))
(c(a) log(k/(a + 1)))a(1 + o(1))

� log k
log(k/2) ·

(log(k/2)
log(k/3)

)2
·
(log(k/3)

log(k/4)

)3
· · ·

� log k
log
√

k
· log(k/2)

log
√

k
· log(k/3)

log
√

k
· · ·

� 2
√

k .

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 37 / 42

Main Theorem Proof: Blue

Fix a1p = a. Then k/(a + 1) < p ≤ k/a, and
a0p = k mod p = k − ap and p − a0p = (a + 1)p − k.

∏
k/(a+1)<p≤k/a

p
p − a0p

=
∏

k/(a+1)<p≤k/a

p
(a + 1)p − k

= exp
∑

k/(a+1)<p≤k/a
log(p)− log((a + 1)p − k)

= exp

 k
a(a + 1) + o(k/ log k)−

∑
k/(a+1)<p≤k/a

log((a + 1)p − k)



Sorenson, Sorenson, & Webster Erdős-Selfridge Function 38 / 42

Main Theorem Proof: Blue

Fix a1p = a. Then k/(a + 1) < p ≤ k/a, and
a0p = k mod p = k − ap and p − a0p = (a + 1)p − k.

∏
k/(a+1)<p≤k/a

p
p − a0p

=
∏

k/(a+1)<p≤k/a

p
(a + 1)p − k

= exp
∑

k/(a+1)<p≤k/a
log(p)− log((a + 1)p − k)

= exp

 k
a(a + 1) + o(k/ log k)−

∑
k/(a+1)<p≤k/a

log((a + 1)p − k)



Sorenson, Sorenson, & Webster Erdős-Selfridge Function 38 / 42

Main Theorem Proof: Blue

Fix a1p = a. Then k/(a + 1) < p ≤ k/a, and
a0p = k mod p = k − ap and p − a0p = (a + 1)p − k.

∏
k/(a+1)<p≤k/a

p
p − a0p

=
∏

k/(a+1)<p≤k/a

p
(a + 1)p − k

= exp
∑

k/(a+1)<p≤k/a
log(p)− log((a + 1)p − k)

= exp

 k
a(a + 1) + o(k/ log k)−

∑
k/(a+1)<p≤k/a

log((a + 1)p − k)



Sorenson, Sorenson, & Webster Erdős-Selfridge Function 38 / 42

Main Theorem Proof: Blue Part 2

We write the sum as an integral, getting

−
∫ k/a

k/(a+1)

log((a + 1)t − k)
log t dt + o(k/ log k)

= − 1
log(k/(a + α))

∫ k/a

k/(a+1)
log((a + 1)t − k)dt + o(k/ log k)

= − 1
log(k/(a + α))

k(log(k/a)− 1)
a(a + 1) + o(k/ log k)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 39 / 42

Main Theorem Proof: Blue Part 2

We write the sum as an integral, getting

−
∫ k/a

k/(a+1)

log((a + 1)t − k)
log t dt + o(k/ log k)

= − 1
log(k/(a + α))

∫ k/a

k/(a+1)
log((a + 1)t − k)dt + o(k/ log k)

= − 1
log(k/(a + α))

k(log(k/a)− 1)
a(a + 1) + o(k/ log k)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 39 / 42

Main Theorem Proof: Blue Part 2

We write the sum as an integral, getting

−
∫ k/a

k/(a+1)

log((a + 1)t − k)
log t dt + o(k/ log k)

= − 1
log(k/(a + α))

∫ k/a

k/(a+1)
log((a + 1)t − k)dt + o(k/ log k)

= − 1
log(k/(a + α))

k(log(k/a)− 1)
a(a + 1) + o(k/ log k)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 39 / 42

Main Theorem Proof: Blue Part 3

log

 ∏
√

k<p<k

p
p − a0p

+ o(k/ log k)

=

√
k∑

a=1

(k
a(a + 1) −

k(log(k/a)− 1)
a(a + 1) log(k/(a + α))

)

= k
log k ·

√
k∑

a=1

(
1− log

(
1 + α

a
)

a(a + 1)

)
·
(

1 + O
(log a

log k

))
.

Set α = 0 to get c = 1.
Set α = 1 to get c = 0.525821

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 40 / 42

Summary

New algorithm with sublinear running time
prime splitting, knapsack, wheel, parallelized
Computed g(k) for 200 < k ≤ 357
Defined ĝ(k), UDH implies g(k) ≈ ĝ(k)
Proved Conjectures 1, 3-5 for ĝ(k)

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 41 / 42

Future/Continuing Work

Compute more g(k) values
CUDA code adaptation and
new GPU hardware
Conjecture (2) for ĝ(k)
Better Knapsack algorithms
(Brianna’s Honor’s thesis?)
Algorithm tweaking
Narrow the constant range
in the exponent for ĝ(k)

Thank you!

Sorenson, Sorenson, & Webster Erdős-Selfridge Function 42 / 42

