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The Erdds-Selfridge Function

Definition:
Let Ipf(n) be the least prime factor of the integer n.

Then g(k) is the smallest integer, with g(k) > k + 1, such that

*

Iof ((g(k))) . s

k

Why?
m Paul Erdés posed the g(k) problem in 1969.

m It's in the Online Encyclopedia of Integer Sequences:
OEIS A003458
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Examples of g(k) using Pascal's Triangle

k=01 2 3 4 5 6 7
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 3 3 21 7 1

g(1)=3since3>1+1and (}) =3 with pf(3) =3 > 1.
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Examples of g(k) using Pascal's Triangle

15 20 15 6 1
21 35 3 21 7 1

k=01 2 3 4 5 6 7
1

11

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 6

1 7

g(1)=3since3>1+1and (}) =3 with pf(3) =3 > 1.
g(2) =6 since 6 > 2+ 1 and (§) = 15 with Ipf(15) = 3 > 2.
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Examples of g(k) using Pascal's Triangle

k=01 2 3 4 5 6 7
1
11
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 3 21 7 1

g(1)=3since3>1+1and (}) =3 with pf(3) =3 > 1.
g(2) =6 since 6 > 2+ 1 and (§) = 15 with Ipf(15) = 3 > 2.
g(3) =7 since 7> 3+ 1 and (}) = 35 with /pf(35) =5 > 3.
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Examples of g(k) using Pascal's Triangle

15 20 15 6 1
21 35 35 21 7 1

k=01 2 3 4 5 6 7
1

11

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
1 6

1 7

1 (
2 6 since 6 >2+1 and (
(

(1)=3since3>1+1and
(2) =
(3) =7since7>3+1and
(4) =

3) =3 with Ipf(3) =3 > 1.

%) = 15 with Ipf(15) = 3 > 2.
7) = 35 with Ipf(35) =5 > 3.
7) = 35 with Ipf(35) =5 > 4.

g 0y 0Oy

4) =Tsince7>4+1and (

0
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Computational Results: Ecklund, Erdés, Selfridge (1974)

TaBLe 1. Values of g(k) = 2500000 for 2 = k = 100
k g(k) ko gk) k g(k) k 8(k) k 8(k)
11 47 21 14871 31 341087 41 B

2 6 12 174 22 19574 32 371942 42 96622
3 7 13 2239 23 35423 33 6459 43/ B

4 7 14 239 24 193049 34 69614 45

5 23 15 719 25 2105 35 37619 46 692222
6 62 16 241 26 36287 36 152188 47/ B

7 143 17 5849 27 19 37 152189 51

8 44 18 2098 28 284 38 487343 52 366847
9 159 19 2099 29 240479 39 767919 53/ B
10 46 20 43196 30 58782 40 85741 100

B: g(k) exceeds the search bound of 2500000
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g(k) is troublesome

1x10°

100000

10000

1000

100

10

g(k) for k up to 40 (EEST4)

ak) ——
exp(k)
exp(klogk) ——
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More Computations

Scheidler and Williams (1992)
used Kummer's theorem to

construct a sieve algorithm to
compute g(k) for all k < 140.

Typo:
g(114) = 59819 90286 02614.

Sorenson, Sorenson, & Webster

26 RENATE SCHEIDLER AND HUGH C. WILLIAMS
TabLE |
k =(k) & #ik) * xik)
2 6 49 38074009 % 5380371247
3 7 0 4301206 01 104141995747
4 7 51 13927679, 98 10628330723
H 3 52 366847 99 5675499
1 62 53 7922123% 100 3935600485
7 143 54 7638454 101 2128236159983
8 44 55 53383095 102 175209712494
9 159 6 17868986, 103 5092910127863
10 46 57 34296443 104 6003175578749
n a7 58 4703099 105 4753399456493
12 174 59 108178559 106 488998352367
13 239 60 93851196 107 6260627365739
18 239 61 2237874623 108 9746385186989
15 62 254322494 109 3245091349869
16 63 157776319 10 9479480684238
17 64 266194499 L 222261611307119
18 65 174133871 112 90200708362489
19 66 25013442 113 8179681081 36869
20 67 673750867 114 8179681081 38869
2 6% 643364693 115 12714356616635615
n 69 237484860 116 4112143718554871
n 0 549177974 17 10884753118083749
2 kil 318470947 18 3TBIT86ISEISTIIG
2 2 4179979724 119 398228285941119
% 157026223 120 260509131365372
n 4 19942847999 121 404087677321873
n 75 48899668971 121 1559885253324
9 % 16360062718 2 1406652074623
30 T 2198202863 124 2820486614399
3 s 950337359 125 3988617067133
2 29154401359 126 5614007242751
3 B0 43228410965 21 60303616486143
3 81 6599930719 128 1432063235580
3 82 1101163607 129 3842391157825%
£ 83 797012560343 130 7984603413422
Bl B4 95685473244 13 3249072073157063
3 BS 449488751711 131 9696597123157
3 86 3MBISIGTETII 131 1558724612351669
o §1 19419852119 134 621248003653094
@ B8 94023115999 135 3157756005623
2 B9 3524996442239 136 4138898693368
o 90 2487760912090 137 951598054985213
m 91 739416801247 138 745504491090939
i 92 2380889434844 139 25972027636644319
3 93 577593151999 140 9089B54222866845
47 232906799 95 107706126974
a8 4s3TSme 95 TISTIN60223
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Even More Computations

Lukes, Scheidler, and Williams
(1997) improved their sieve,

used special-purpose hardware,

and computed g(k) for all
k < 200.

1716

RICHARD F. LUKES, RENATE SCHEIDLER, AND HUGH C. WILLIAMS

413 88986 Li(-ﬁ
95159 8054985213
60124 2167764223

139719 3586455769

17500 5016485374
72531 1731192223
L180 S40DS09148

3 8520098551

87

20212 9337635322

02430

e 9ii]
iES 315 7750005
136
137
138
139 | 2507202 7636644310
110 DOEOES 42228668 15
Ul | 6333 i
12 | 1990465 6320115423
143 | 1542280 S461804543
144
145 330515 6674500871
146
147
148

E EIE
151 | 3258080 9217872863
152 | 15540706 7465547410
153 | 53518400 525
154 17864600 TH2ZBON08 T4
155 | 4120798 4000013467
156 | 2527233 49700440
157 | 104130820 7102375167
158 | AT02566 0T5ES82783
150 | G485551 8266246550
160 | 1664745 62800:
161 342150 0108330941
162
163 | 5188127 2225707430
164 14664726 182!
165 0865227 4401898671
166

TH84 TRGRO33047

T2698007 380( i)

& 41E]
170 5042841 50075160671
171 28406504 HTA228671
172 11223206 5794463007
173 138175311 6300427373
174 11057733 6695616174
175 194409219 4361247743
176 5530 3012072703
177 19246523 8561441207
178 G480 9280 434
179 DOTETAID TOF0300850
180 43976301 6255083614
181 2 8336150170 1232528573
182 2R0REEIR63 4018007 183
183 5351624705 6143575
184 2662687844 8827721460
185 ATL3603655 0263266493
186 | 14274157994 6200507438
187 220884901 2824359867
188 127198106 5611178943
189 5620805 3155332989
[ 45565223 2102800367
191 939688321 47 19852001
192 06365072 4436001873
193 | 4 3525141972 $230720240
104 1 2638743588 3733706219
195 2632501216 1870817495
106 TR151666 4215365373
197 |4 2706097712 6350080040




1x10 28

1x10 20

1x1018

1x1010

100000

g(k) for k up to 200 (SWS2/LSWIT)

k) ——
exp(k)
expl(k.flog k) —

20 40 60 80
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99 is Trouble!

s asanel

b e e

o e 68 5
ot

i
e
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New Computational Results

m We have a new algorithm to compute g(k) in sublinear time.

m Our approach is also built on Kummer's theorem.

m We use a space-saving wheel datastructure. K\

m We found g(k) for all k < 272 using one processor,
and for k = 273 to 357+ in parallel (so far).
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Computational Results: Single Core

k g(k)| k g(k)
201 235 54612 35023 12966 07453 226 133170 49136 16068 80243| (k)
202 371 93707 68876 94169 93998| 227 25 43371 29078 24284 53367
203 36 66628 18040 77604 67119| 228 4 42053 79137 83327 73614| 2o 3050 66797 58148 26766 11579

252 10505 00162 90998 95371 30494
253 3103 09358 30344 20590 94269
254 1166 62737 17826 44531 56094
255 1021 56121 82556 87267 01055
256 128 22340 15164 11349 38548
257 7712 29340 10480 52695 50483
258 58587 79034 00801 08562 54858
259 28954 56510 29429 20300 85999
260 9052 78792 60680 37520 93549
261 3752 17161 28291 37355 29917
262 370 44716 59526 93861 95399
263 52789 04430 06789 43127 33639
264 34644 90142 64935 39757 27919
265 29014 53224 87882 19896 83691
266 45629 29239 07110 01927 14698
267 8235 39060 08758 91988 86219
268 68 39739 60096 00722 01118
269 161558 09307 54284 34696 01199
270 17012 60056 85638 85052 85598
271 237245 88062 88508 66946 32223
272 57 61284 34192 78614 55093 37498

204 178 22243 70804 75634 88989 229 74 31339 46454 40891 68359
205 119 23364 21369 70734 19215 230 1795 17836 21533 83405 06863
206 118 94994 19601 54916 70238 231 1535 32995 48871 64662 39991
207 4 14102 11738 06206 56623| 232 111 43965 49911 64968 95483
208 128 63517 97975 53174 93464| 233 20200 73550 49977 05129 39243
209 40 80254 70430 94462 56859| 234 9141 02029 72226 64023 95374
210 3 81063 47274 59626 93595 235 3353 56843 86952 45592 15615
211 277 19087 51211 86811 93467| 236 9004 68924 26010 08758 44863
212 254 11430 46501 91044 33623| 237 128 10339 84890 50088 80623
213 941 02942 94951 13843 10999| 238 797 67177 19809 53861 33999
214 542943 43587 62853 77239| 239 18991 37758 35752 30838 29999
215 194050 01839 78664 31743| 240 179 81118 13875 42559 25240
216 43 71951 29369 55065 01119| 241 50194 81877 83204 04927 52119
217 17 60181 71551 23707 20217| 242 1 05794 00205 01218 84737 54618
218 40 46933 47457 90358 45374 243 1675 50917 78080 00171 78623
219 460119 05176 06932 47999| 244 7032 91964 49292 36074 24244
220 507302 74025 33237 33471| 245 35619 19278 93870 30042 55997
221 11 24738 59029 35409 05471| 246 57819 80943 94360 21432 63998
222 11720 13806 06713 22847| 247 8791 54436 07103 73768 64247
223 29 34696 47028 07658 76223| 248 1028 52788 08587 24965 75999
224 51633 58728 02682 87224 249 14 56775 25795 65720 74749
225 12369 18109 50028 52853| 250 276 46926 37489 69206 77374
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Computational Results: Cluster with 192 Cores

k g(k)

k &(k)
272 57 61284 34102 78614 55003 37408
273 11 93755 72096 07235 88168 84023
274 288454 13176 35013 24160 68574
275 17152 34131 63802 94572 85011
276 88030 17168 24411 10341 86038
277 453 93307 13057 10829 21927 70333
278 30 50539 72728 23202 00849 01718
279 266648 13175 24792 99862 36799
280 70874 78896 73459 57906 03609
281 123 66203 54022 28562 17374 11069
282 738207 70384 67082 65425 71838

283 37813 55429 48519 12235 53898 37243
284 6100 10364 48359 18395 19770 39199
285 78766 18312 18052 31134 42561 68735

286 747 51565 01679 14418 20981 52223
287 992 72191 61150 70855 53665 86719
288 5090 76951 48442 32227 73921 76099
289 4834 99245 99858 90424 83401 35289
290 580 10024 22391 77582 79250 69666
291 209 69391 29197 03178 94977 03719
292 174 18908 52958 77197 48733 28493

293 16639 09980 87532 46018 20569 16799
294 20223 01592 35223 93093 61644 12799
295 14858 57580 15296 66376 70445 68447
296 41418 90259 64755 93533 87671 33096
297 2412 51951 98121 56990 65688 86073
298 25619 63627 54642 94279 56273 35598
299 1832 43102 56640 25079 58634 93499
300 701 85519 63812 11947 39815 22430

Sorenson, Sorenson, & Webster

301 113 92964 05228 07857 10715 23117

302 1742 88530 64455 07964 88047 54943
303 129 26741 47619 33558 63300 61679
304 13 26053 17393 60472 36038 80314
305 172946 53384 73935 85567 11859
306 3 51841 28928 12034 40626 05307
307 1779 34819 88869 76850 45198 63743
308 563 71964 39859 00813 40202 10998
309 98 07021 15457 23811 10525 81749
310 1 24437 81505 29347 17696 51070
311 1560 53896 22680 68278 05256 06711
312 1796 99278 95512 29968 42460 24124
313 3 00996 54176 68374 47827 87101 84313
314 187014 93014 72478 06122 67573 88094
315 1361 11485 02742 01184 89157 03743
316 103374 01931 39808 86145 47639 65949

317 68 85447 25707 42253 40215 24113 79199
318 6 86881 00807 03611 96229 81358 41598
319 11 86184 98065 18829 52817 06712 46719
320 140079 84256 27063 06819 06499 16746
321 2435 79072 21965 54229 62339 49121
322 15 25966 57699 53539 87155 01511 11623
323 169829 77104 46041 21145 63251 22499
324 2 63741 60892 64064 50498 97681 38599

325 4 61167 55159 08879 62071 94084 17237
326 398508 97267 68151 31902 68129 69326
327 80125 12464 39084 44313 42285 17847
328 25358 25141 13174 63981 15617 02348
329 27539 98951 79861 74202 62006 60349
330 736 38290 36775 34959 12602 87866

k g(k)
331 20 99993 85082 46331 44915 31985 15583
332 156353 08925 25226 50787 39317 38108
333 8456 75301 70500 03521 07482 84239
334 53204 32802 68314 42061 49241 71599
335 22796 62357 31196 28995 02247 14111
336 349 35354 92007 35618 92451 13714
337 811762 65164 78657 57300 21300 74967
338 025106 21191 02282 31521 77652 84338
339 213133 77351 76125 57319 62221 93619
340 04762 09789 37827 81019 73160 52471
341 14699 48703 85053 43492 43211 94997
342 13442 11412 62865 55639 32278 13718
343 20404 38065 34718 67793 30339 89119
344 1438 56418 63105 76769 23108 10974
345 815 08296 83685 96664 34364 17497
346 103 67357 40155 38474 19752 26746
347 12044 06321 00589 22956 10198 04123
348 4245 11428 30357 75316 13573 01599
349 181690 93222 30869 99065 49003 41599
350 100702 38255 35035 97742 40622 77982
351 100702 38255 35035 07742 40622 77983
352 4660 85432 99042 93285 18996 37232
353 148 50654 32318 56407 35281 78906 02479
354 24 43080 13874 67081 98567 94505 54234
355 50 76963 11372 13168 17954 82711 30491
356 O 20253 34900 21677 60458 86574 61236
357 280803 34667 27432 75770 65998 07359
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Webster's Conjecture

Webster's Conjecture (2019)
g(k) + 1 = g(k + 1) infinitely often.

g2)+1=g(3)=7

g(10) +1 = g(11) = 47

g(18) + 1 = g(19) = 2099

g(36) + 1 = g(37) = 152189

g(350) + 1 = g(351) = 1097023825535035977424062277983
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Computational Results - So Far

a(k) for k up to 357

1x1030

1x102®

1x1020

1x101% 1
alk) ——
exp(k)
1x1p L0 . . . . . Expllog k),
200 220 240 260 280 300 320 340
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1x10 38

1x1030

1x10 28

1x1020

1x101°

1x1010

100000

g(k) for all k up to 357

ok ——

exp(kllogk) ——

50 100

150
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Kummer's Theorem

Theorem (Kummer).

Let kK < n be positive integers, and let p be a prime < k.
Let t > |log, k| + 1 be an integer and write

t t
kzZa,—pi and n—= Zb,-pi
i=0

i=0

as the base-p representations of k and n, respectively.
Then p does not divide (}) iff b; > a; for all i < t.
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k=10,n=12,p = b:
k =205, n = 225 so 5 does not divide (j5) = 66.
«4O0> «F)r «=)r « =) = Q>
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Kummer's Theorem - Examples

k=10,n=12,p=5:
k = 205, n = 225 so 5 does not divide (}g) = 66.

k=10,n=12,p=3:
k = 1013, n = 1103 so 3 does divide (}g) = 66.
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Kummer's Theorem - Examples

k=10,n=12,p=5:
k = 205, n = 225 so 5 does not divide (}%) = 66.

k=10,n=12,p=3:
k = 1013, n = 1103 so 3 does divide (]5) = 66.

Idea:

For each p < k, we get a list of acceptable residues modulo
ongp k]+1

Combine these residues modulo

My = H p\_logp k]+1
p<k

using the Chinese remainder theorem to create a sieve problem.
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Kummer's Theorem - Examples

k=10,n=12,p=5:
k = 205, n = 225 so 5 does not divide (}g) = 66.

k=10,n=12,p=3:
k = 1013, n = 1103 so 3 does divide (12) = 66.

Idea:

For each p < k, we get a list of acceptable residues modulo
ongp k]+1

Combine these residues modulo

My = H p\_logp k]+1
p<k

using the Chinese remainder theorem to create a sieve problem.
g(k) is the smallest acceptable residue modulo M with
g(k) > k+1.
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Example with kK = 10

p=2 k=1010,:
10105, 10115, 11105, 11115
(4 residues mod 2% = 16)

p=3, k=101
1013, 1023, 1113, 1123, 1213, 1223, 2013, 2023, 2113, 2123, 2213, 2223
(12 residues mod 33 = 27)

p=5, k=205
205, 215, 225, 235, 245, 305, 315, 325, 335, 345, 405, 415, 425, 435, 445
(15 residues mod 52 = 25)

p=7, k=137

137, 144, 157, 167, 237, 244, 257, 267, 337, 347, 357, 367, 437, 444, 454,
467, 537, 54+, 557, 567, 637, 647, 657, 667

(24 residues mod 72 = 49)

Sorenson, Sorenson, & Webster Erd8s-Selfridge Function 18 /42



Mo = 16 - 27 - 25 - 49 = 529200.

Rig:=4-12-15-24 = 17280 is too many residues to check.

it
-

«0O» «Fr «=» « Q>



Algorithm Example with kK = 10

Mo =16 - 27 - 25 - 49 = 529200.

Rig:=4-12-15-24 = 17280 is too many residues to check.

We estimate that g(10) < 306.27. ( roughly k - My /Ry )
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Algorithm Example with kK = 10

Mo = 16 - 27 - 25 - 49 = 529200.
Rig:=4-12-15-24 = 17280 is too many residues to check.

We estimate that g(10) < 306.27. ( roughly k - My /Ry )
We will look modulo N = 2%.3.7 = 336, which divides My, and

search among the residues modulo 336 instead:
10, 11, 14, 15 modulo 16

1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.
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Algorithm Example with kK = 10

Mo = 16 - 27 - 25 - 49 = 529200.

Rig:=4-12-15-24 = 17280 is too many residues to check.
We estimate that g(10) < 306.27. ( roughly k - My /Ry )

We will look modulo N = 2%.3.7 = 336, which divides My, and
search among the residues modulo 336 instead:

10, 11, 14, 15 modulo 16
1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.
We use a wheel data structure to do this efficiently.
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Algorithm Example with kK = 10

Mo = 16 - 27 - 25 - 49 = 529200.

Rig:=4-12-15-24 = 17280 is too many residues to check.
We estimate that g(10) < 306.27. ( roughly k - My /Ry )

We will look modulo N = 2%.3.7 = 336, which divides My, and
search among the residues modulo 336 instead:

10, 11, 14, 15 modulo 16
1, 2 modulo 3
3, 4, 5, 6 modulo 7

For a total of only 32 residues to check.
We use a wheel data structure to do this efficiently.

How did we pick N = 3367
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Knapsack

m Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.
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Knapsack

m Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.

m For a ring with modulus p® and r(p, e) residues,
Ring Size := log(p¢) = elog p.
Ring Value :=log(p€/r(p,e)) = elog p — log r(p, e).
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Knapsack

m Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.

m For a ring with modulus p® and r(p, e) residues,
Ring Size := log(p¢) = elog p.
Ring Value :=log(p€/r(p,e)) = elog p — log r(p, e).

m These definitions lead to minimizing the number of residues to
check modulo N.
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Knapsack

Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.

For a ring with modulus p¢ and r(p, €) residues,

Ring Size := log(p¢) = elog p.
Ring Value :=log(p€/r(p,e)) = elog p — log r(p, e).

These definitions lead to minimizing the number of residues to
check modulo N.

Prime splitting is choosing the best e for each p to maximize
the Value/Size ratio.
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Knapsack

m Choosing prime rings to include in N is a variation of the
knapsack problem, which is NP-complete.

m For a ring with modulus p® and r(p, e) residues,
Ring Size := log(p¢) = elog p.
Ring Value := log(p¢/r(p,e)) = elog p —log r(p, €).
m These definitions lead to minimizing the number of residues to
check modulo N.

m Prime splitting is choosing the best e for each p to maximize
the Value/Size ratio.

m Our greedy knapsack algorithm picks the rings of highest
value such that the sum of the sizes is roughly log N. For
k =10 we'd aim for log N near log 307.
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Knapsack Example with kK = 10

p e |log,k]+1|r(p,e) filterrate| k in base p
2 4 4 4 025 1010,

3 1 3 2 0.666667 | 1013

7 1 2 4 0571429 | 13,

3 3 3 6(12) 0.666667

5 2 2 15 06 205

7 2 2 6(24) 0.857143

We ran an algorithm to choose an optimal splitting point (e) for
each prime. Both rings are included as options for the knapsack

algorithm.

Sorenson, Sorenson, & Webster
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Knapsack Example with kK = 280

p e |log, k] +1 | r(p,e) filterrate | k in base p
47 1 2 2 0.0425532 | 5: 4547
71 1 2 4 0.056338 | 3:6771
17 2 2 9 0.0311419 | 16 : 817
41 1 2 7 0170732 | 6:344
97 1 2 11 0.113402 | 2: 8697
19 2 2 25 0.0692521 | 14 : 1449
7 3 3 28 0.0816327 | 5507
149 1 2 18 0.120805 | 1: 131149
73 1 2 12 0.164384 | 3:6173
2 5 9 8 025 100011000,
151 1 2 22 0.145695 | 1:12915;
3 1 6 2 0.666667 | 1011013
13 2 3 30 0.177515 | 18713
59 1 2 15 0.254237 | 4 : 44sg

Sorenson, Sorenson, & Webster
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The Wheel Data Structure, k = 10

Ring 16:
residue 0 1 2 3 4 5 6 7
admissible 0 0 0 0 0 0 0 0
jump +10 | +9 | +8 | +7 | +6 | +5 | +4 | +3
residue 8 9 | 10 | 11 | 12 | 13 | 14 | 15
admissible 0 0 1 1 0 0 1 1
jump +2 | +1 | +1 | +3 | +2 | +1 | +1 | +11
Ring 3:
residue 0 1 2
admissible 0 1 1
jump +16 | +16 | +32
Ring 7:
residue 0 1 2 3 4 5 6
admissible 0 0 0 1 1 1 1
jump +48 | 496 | +144 | +192 | +48 | +48 | 448
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The Wheel Data Structure Example, k = 10

16 3 7 Filters
k+2=12—14 | 14— 14 | 14 — 62 Fails mod 27

+48 = 110 | Fails mod 27

+48 = 158 | Fails mod 25

+48 = 206 | Fails mod 25

+32 =146 | 46 — 46 Passes! g(10) < 46

+48 = 94 Don’t bother

4192 = 286 | Don't bother

+48 = 334 | Don't bother
+1=15 15—-31 |31—231

Sorenson, Sorenson, & Webster
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Algorithm Running Time

Theorem.

Under the assumption of the Uniform Distribution Heuristic (see
the next slide) our new algorithm has a running time of

c - kloglog k
(log k)?

arithmetic operations, for a constant ¢ > 0.

gk e |- 1+ o)

It's possible to prove a sublinear running time with no assumptions.

Sorenson, Sorenson, & Webster Erd8s-Selfridge Function 25 /42



Approximating g (k)

We have M) = Hpng“ogP kK141,
Ry counts the acceptable residues, modulo M.
é‘(k) = Mk/Rk.
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Approximating g (k)

We have My = [1,<x plloge K1+1,
Ry counts the acceptable residues, modulo M.
g(k) := My /Rx.

Uniform Distribution Heuristic (UDH)

The Ry acceptable residues are uniformly distributed modulo M.
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Approximating g (k)

We have M) = Hpng“ogP kK141,
Ry counts the acceptable residues, modulo M.
é‘(k) = Mk/Rk.

Uniform Distribution Heuristic (UDH)

The Ry acceptable residues are uniformly distributed modulo M.

The UDH implies that, with high "probability”,

8(k)/k < g(k) < &(k) - k,

log g(k) = log g(k) + O(log k).

Sorenson, Sorenson, & Webster Erd8s-Selfridge Function 26 /42



g(k) versus g(k) (logscale)

g(k) compared MIR with error k

1x10 38

MR with error ——
ak) %

1x10%°

1x10 28

1x1020

1x1018

1x1010

100000
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Zooming in: for(k=200; k<250; k++)

o(k) compared MIR with error k
1x10%8

MR with error ———
ak)  x

1x1028

1x1024 L

1x1022 L

1x102° L

1x1018 L

1x10 18

200 210 220 230 240 250
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Statistical Tests for Uniformity

Ry, Anderson-Darling

Kolmogorov-Smirnov

k
5
6
7
8

9
10
11
12
13
14
15

80 0.9885

96 0.9129
1008 1
2304 1
8640 1

17280 0.9989
285120 -
518400 -
8087040 -
9676800 -
16632000 -

1
0.99
0.978
0.901
0.945

0.998

Thanks to Dr. Rasitha Jayasekare for her help with this.
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Approximating g (k)

Define G(x, k) to be the number of n < x such that (}) has no
prime divisors < k.
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Approximating g (k)

Define G(x, k) to be the number of n < x such that (}) has no
prime divisors < k.

G(x, k) = 59 (1 + o)

This also suggests that g(k) is near g(k).
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The Five Conjectures

Ecklund, Erdés, and Selfridge (1974) conjectured the following:

Conjecture g(k) | &(k)
(1) limsup,_, . g(k +1)/g(k) = ? TRUE
(2) liminfy_oo g(k +1)/g(k) = ? ?

(3) g(k) is super-polynomial in k TRUE | TRUE
(4) limg o0 g(k)VK =1 ? | TRUE
(5) g(k) < exp[ck/ log k] for a constant ¢ > 0 ? TRUE

m Granville and Ramaré (1996) proved (3) by showing

g(k) > keV/logk/loglogk

m Konyagin (1998) has the best lower bound, g(k) >> k¢'ogk.

Sorenson, Sorenson, & Webster
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New Results for g(k)

lim sup M = 0.
k—00 g(k)

We prove the ratio g(k + 1)/&(k) > log k when k + 1 is prime.
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New Results for g(k)

g(k+1
IimsupM = 0.

k—00 é’(k)

We prove the ratio g(k + 1)/&(k) > log k when k + 1 is prime.

log&(k)  _
~  k/logk

0.525. ..+ o(1)

1+ 0o(1).

exp(0.525k/ log k) < g(k)+°() < exp(k/ log k).
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Upper and lower bounds

1x10 140

1x10120

1x10 100

1x10 80

1x10 50

1x10 40

1x1020

MR compared to exp(c*k/log k) with c=0.525 or c=1

c=0.525

=l ——

c=1 with exp(sgrt(k)) error

MIR with error —+—

200 400 600 800

Sorenson, Sorenson, & Webster

1000 1200 1400 1600 1800 2000
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Main Theorem Proof: Three Amigos

For prime p, write k in base p:

log,, k]
_ i
k= E aipp’ .
i=0
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Main Theorem Proof: Three Amigos

For prime p, write k in base p:

log,, k]
_ i
k= Z aipp’ .
i=0
log, k|+1
A (k) . Mk - Hp< : & !
R - Ung
k Hp<k H ( - aip)
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Main Theorem Proof: Three Amigos

For prime p, write k in base p:

Llog,, k] .
k= Z ajpp".
i=0
R Mk H Llogp k|41
g(k) = R7k = p<[|ogp
Hp<k H ( - aip)
log,, k]
p<k i=0 o alp
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Main Theorem Proof: Three Amigos

For prime p, write k in base p:

llog, k]

k= Z aippi.

i=0

llog, k|+1
g = e~ b

[
Ric o<k Htogp (p— aip)
log,, k]

=11 11 ;

p<k i=0
llog,, k]

= 11 I

p<\f‘0 pilpf<<k

— alp

H p p

Sorenson, Sorenson, & Webster Erd8s-Selfridge Function
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Main Theorem Proof: Red

[log,, k] llog,, k|
II 1I < IT Il »
p<vk =0 PP p<vE =0
_ H pLIongJ-i-l
p<vk
< J] £
p<vk
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Main Theorem Proof: Red

[log, k]

Sorenson, Sorenson, & Webster

IN

<

llog, k]

I Il »

p<vk =0
H p [log, k]+1
p<vk

II ¥
p<vk
k3~7r(\/E)
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Main Theorem Proof: Red

Llogp k]| \_Iogp k]

I Il »

p<vk =0
_ H p [log, k]+1
p<vk

< J] £
p<vk
_ k3~7r(\/E)

< exp6Vk(1+ o(1)).

IN

p<vik =0 P
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Main Theorem Proof: Green

If vk < p < k and fix a1, = a, then k/(a+1) < p < k/a.

p VK p
H P —aip B ];[ H p—a
Vk<p<k a=1 k/(a+1)<p<k/a
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Main Theorem Proof: Green

If vk < p < k and fix a1, = a, then k/(a+1) < p < k/a.

p VK p
H P —aip B ];[ H p—a
Vk<p<k a=1 k/(a+1)<p<k/a
M3

- 11 11 (1_3)_1

a=1 k/(a+1l)<p<k/a p
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Main Theorem Proof: Green

If vk < p < k and fix a1, = a, then k/(a+1) < p < k/a.

P Vi P
H P —aip B ];[ H p—a
Vk<p<k a=1 k/(at1)<p<k/a
LVk]

- 11 11 (1_3)_1

a=1 k/(a+1l)<p<k/a p

_ Lﬁ@ Ha<p§k/a (1 - %)71

a=1 Ha<p§k/(a+1) (1 B %)71
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Main Theorem Proof: Green

If vk < p < k and fix a1, = a, then k/(a+1) < p < k/a.

H p

— a
Vk<p<k p—aip

[V p

a=1 k/(a+1)<p§k/ap_ a
V]

m (-2

a=1 k/(a+1l)<p<k/a p

Lﬁ@ Ha<p§k/a (1 - %)71

a=1 Ha<p§k/(a+1) (1 B %)71

Y (c(a) log(k/2))(1 + o(1))

11 (c(a) log(k/(a +1)))2(1 + o(1))
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Main Theorem Proof: Green part 2

_ (c(a) og(k/a))?(1 + o{1)
575 = U w@eatsGrmyra + o)

Vk<p<k
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Main Theorem Proof: Green part 2

LVk]
P _ (c(a) log(k/a))*(1 + o(1))
1l p—ap 11 (c(a)log(k/(a+1)))2(1 + o(1))

Vk<p<k a=1
log(k/2) log(k/3)

log k

< log(k/2) (log(k/3>>2 | (|og(k/4))3 a
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Main Theorem Proof: Green part 2

p VKL (¢(a) log(k/a))(1 + o(1)

AU = L G ioste/Ga+ D+ o)
log k log(k/2) 2 log(k/3) 3
< log(k/2>'<|og(k/3>> '(|og(k/4))
< logk log(k/2) log(k/3)

logvk logvk logVk
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Main Theorem Proof: Green part 2

LVk]
P _ (c(a) log(k/a))(1 + o(1))
AL o5, = 1L (yiosth/Gor )i+ o)
log k log(k/2)\? [log(k/3)\>
< log(k/z)'<|og(k/3)> '(|og(k/4))
< logk log(k/2) log(k/3)

logvk logvk logVk
< 2vk,
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Main Theorem Proof: Blue

Fix aip = a. Then k/(a+1) < p < k/a, and
agp = kmod p=k —apand p—app = (a+1)p— k.

H P
k/(a+1)<p<k/a P — 0P
— 11 _k
(a+1)p—k

k/(a+1)<p<k/a
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Main Theorem Proof: Blue

Fix aip = a. Then k/(a+1) < p < k/a, and
agp = kmod p=k —apand p—app = (a+1)p— k.

H p

k/(a+1)<p<k/a P — 0P
= I1 ___k
kf(ati)<p<k/a (@ TP —K

= ep Y  log(p)—log((a+1)p—k)
k/(a+1)<p<k/a
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Main Theorem Proof: Blue

Fix aip = a. Then k/(a+1) < p < k/a, and
agp = kmod p=k —apand p—app = (a+1)p— k.

H p

k/(a+1)<p<k/a P — 0P

_ 11 P
K(ati)<psksa (TT 1P =K
= exp )  log(p)—log((a+1)p—k)
k/(a+1)<p<k/a
= exp T + o(k/log k) — Z log((a+1)p — k)
a(a+1) k/(a+1)<p<k/a
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Main Theorem Proof: Blue Part 2

We write the sum as an integral, getting

k/a  log((a+ 1)t — k)
— dt + o(k/ log k
L™ ot o(k/log k)
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Main Theorem Proof: Blue Part 2

We write the sum as an integral, getting

_/kk/a lOg((a+1)t_k)dt+o(k/logk)

/(a+1) log ¢
1 /k/a log((a+ 1)t — k)dt + o(k/ log k)
= —— og((a — o o
log(k/(a+ @)) Jk/(at+1) . ¢
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Main Theorem Proof: Blue Part 2

We write the sum as an integral, getting

_/kk/a lOg((a+1)t_k)dt+o(k/logk)

/(a+1) log t
L (et 1)t — K)de+ ofk/ log k)
-~ log(k/(a+ ) /k/(a+1) ¢ ©
1 k(log(k/a) — 1)

= Tlog(kf(ata)  a(@rn) T OoWk/lek)
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Main Theorem Proof: Blue Part 3

log ( 11 pa ) + o(k/ log k)
vk

_ < ko k(log(k/a) — 1) )
a(a+1) a(a+1)log(k/(a+a))

k § 1—log(1+2) <+O(Ioga))
~ logk = a(a+1) log k
Set a =0 to get c =1.
Set a =1 to get ¢ = 0.525821.. ..
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Summary

New algorithm with sublinear running time
prime splitting, knapsack, wheel, parallelized

Computed g(k) for 200 < k < 357
Defined g(k), UDH implies g(k) ~ g(k)
Proved Conjectures 1, 3-5 for g(k)
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Future/Continuing Work

m Compute more g(k) values e

m CUDA code adaptation and
new GPU hardware

283 2 A

CZ e v i
—i3au7e a(F )

m Conjecture (2) for g(k) o3 s e e

,.,..‘.\Io-&u:”
2B

m Better Knapsack algorithms
(Brianna's Honor's thesis?)

m Algorithm tweaking

m Narrow the constant range
in the exponent for g(k)

Thank you! - ==

“Ha! Webster’s blown his cerebral cortex.”
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