Binomial Probability of Prime Number of Successes

Sungjin Kim, Nilotpal Kanti Sinha

California State University Northridge
Department of Mathematics
707107@gmail.com

Dec 17, 2019



Introduction

e Sums of binomial coefficients for n € N,

k>0

Sungjin Kim (CSUN)

3 (:) —on

n __~an—1
Z (Qk) =2 ’
k>0



Introduction

e Sums of binomial coefficients for n € N,

50" 5

k>0 k>0
e Generally,
2 2 k —2b)k
E E w” 1 + wk — cos” alll cos u
ak +b a a a
k>0 k=1

where 0 < b < a,n > 0 and w = €*™/2 is a primitive a-th root of unity.
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Question

o (A Mathematics Stack Exchange (MSE) question by N. K. Sinha) What
is known about asymptotic order/lower and upper bound of the sum

sn:Z(Z),

p<n

where the sum is over all prime numbers p < n.
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Question

o (A Mathematics Stack Exchange (MSE) question by N. K. Sinha) What
is known about asymptotic order/lower and upper bound of the sum

n
p<n P
where the sum is over all prime numbers p < n.

Then S,/2" is the probability that the number of successes in n

independent Bernoulli trials is a prime number, where the probability of
success in each trial is 1/2.
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Notations

e P(A) is the probability of the event A.

e T, ~B(n,3) is the binomial distribution with n trials, and the
probability of success is 1/2. Then we have P(T, = k) = (})/2" for

0 < k < n. T, has the mean n/2, and the standard deviation \/n/2.

e P is the set of prime numbers. Thus, P(T, € P) = S,/2".

e m(y) = >_,<, 1 is the number of primes not exceeding y.

e A(n) < B(n) means |A(n)| < cB(n) for some positive absolute constant
c.

o (}) = % = (X,) is the extension of binomial coefficients
forreal x >0and v > 0. Forany 0 < v; < v, < x/2< w3 < vy < x, we
have 1< (7)< (7)) < () 2 (5) = (5) = 1

oS, = ZPSX (;) is an extension of S, to positive real numbers.

e The letters j, k, n, p are integers. In particular, p denotes a prime. The
letters «, 8, €, t, v, x, X are real numbers. We write ¢y, ¢, ... for absolute
positive constants that can be effectively computed.
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Initial comments and an answer on MSE

e (Qiaochu Yuan) The asymptotics should be dominated by the

distribution of primes near n/2. By the Prime Number Theorem (PNT) we

expect such primes to locally have a density of about m. So a rough

guess for the asymptotics is O(,ogn (n/2))' which works out to something
like O(2"/(v/nlogn)). This shouldn’t be hard to get experimental data on.
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Initial comments and an answer on MSE

e (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about m. So a rough

guess for the asymptotics is O(,ogn (n/Z))' which works out to something

like O(2"/(+/nlogn)). This shouldn't be hard to get experimental data on.
e (i707107) @QiaochuYuan According to your guess, O(2"/logn) is
plausible since you began with the density.

e (N. K. Sinha) @QiaochuYuan. | think this approach will work. The
square root in the denominator looks a little doubtful.

o (Michael Lugo) Experimentally O(2"/(logn)) looks more likely than the
form with the square root.
e (i707107) Answered with
is a conjecture.

< S, < 2loelogn \ here the lower bound

Iog n logn

e (i707107) Improved the answer wit Wivlfgg,';’g” where the
lower bound is a conjecture.
e (i707107) Improved the answer with |ogn <5 K |Ognn where the lower

bound is a conjecture.
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Numerical observations on (n, (S, log(n/2))/2") for large
n's-by N. K. Sinha

n Splog(n/2)/2" n Splog(n/2)/2"
100000 1.069169869 250000 0.986114371
110000 0.94301485 260000 0.965609639
120000 0.917190017 270000 0.973894862
130000 1.009817376 280000 0.99483856
140000 1.027465936 290000 0.953542586
150000 0.974742038 300000 1.028188428
160000 1.029105385 310000 0.993445284
170000 0.965422147 320000 1.017001058
180000 1.119848774 330000 0.869868372
190000 1.054380578 340000 1.073959735
200000 0.948608301 350000 0.873428088
210000 0.972819167 360000 1.090734815
220000 0.904355813 370000 1.024869577
230000 0.973834543 380000 0.965571714

/ Q784878 aNNNN 1 N2R28072R
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Main results

Theorem (1)
There is an absolute constant ¢y > 0 such that for almost all n,
2!1

— n —co(log n)1/3/(log log n)1/3
Sn og(n/2) + O(2"e ) as n — oo.

Here, almost all means that the number of n € [1, N] N Z for which the
asymptotic formula fails is O(Ne“:o('°g N)'/3/(log log N)1/3).

Theorem (2)

We have

S, Sl
"Ognglglimsup R

n—o0 2

o = liminf
n—o0

< 4.
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Main results

Theorem (3)

The statement « > 0 holds if and only if there are constants by, b > 0
such that

7r (g + blﬁ) -7 (g — bl\/ﬁ) > llji;/nﬁ for all n > No(by, b2).
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Proof of Theorem 1

Lemma (Hoeffding's Inequality)

Let Xi, ..., Xp be independent bounded random variables with
a<X;<bforalli and X = %ZX,—. Then for all t > 0,

n 2
P (| X —E(X)|>1t) <2exp (—(bz_—ta)2>

As a consequence, we have for sufficiently large real x > 0, r > 0, and
BX:{kSX: |k—§|2r\/§},

2% 3 <);) < zix 3 (i) < 4e2,

kePNByx keBx
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Proof of Theorem 1

Lemma (Hoeffding's Inequality)

Let Xi, ..., Xp be independent bounded random variables with
a<X;<bforalli and X = %ZX,—. Then for all t > 0,

n 2
P (| X —E(X)|>1t) <2exp (—(bz_—ta)2>

As a consequence, we have for sufficiently large real x > 0, r > 0, and
BX:{kSX: |k—§|2r\/§},

2% 3 <);) < 2% 3 (i) < 4e2,

kePNByx keBx

Here, r may depend on x.
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Main ingredients

We need Stirling's formula of the form:

M(x +1) = V27x (g)x <1 +0 (;)) .

The following is the zero density estimate by Huxley [H].

Lemma (Huxley 1972)
Given 0 < o <1 and T > 2, define

N(o, T)={p=B+iv:{(p) =0, o < B <Ly < T}.
There is an absolute constant B > 0 such that

N(o, T) < T>*1=9)(log T)E.
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Main ingredients

We need Stirling's formula of the form:

M(x +1) = V27x (g)x <1 +0 <)1<>> .

The following is the zero density estimate by Huxley [H].

Lemma (Huxley 1972)
Given 0 < o <1 and T > 2, define

N(o, T)={p=B+iv:{(p) =0, o < B <Ly < T}.
There is an absolute constant B > 0 such that

N(o, T) < T>*1=9)(log T)E.

Note that N(o, T) = 0 for o > 3 if the Riemann Hypothesis is true.
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Primes in almost short intervals

Denote by
(log X)*/*

HT O Toglog Xy

Corollary

Let X —5/6+¢ <§< X~1/6_ There is an absolute positive constant
co := co(€) > 0 such that for x € [X,2X], X > Xp(e)

0x
og x

m(x +0x) = 7(x) = —— + 0 <5xe’C°L> (1)

holds with an exceptional set £(X,d) of size at most O(Xe 2%").
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Toward multiple short intervals result

e We needed a similar result that applies to multiple short intervals
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Toward multiple short intervals result

e We needed a similar result that applies to multiple short intervals.
Problem 1. If we keep lengths of these short intervals the same, then §
must be allowed to vary with x.

Problem 2. If we keep 0 not vary with x, then the lengths of the short
intervals must vary.

We cannot have both the same length intervals and ¢ not varying with x.
So, if we try to fix 1, then 2 arises, and vice versa.
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Whac-A-Mole
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Whac-A-Mole
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Resolution: Just live with Problem 2.
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Multiple almost all short intervals

Corollary

Let X > Xp, 0 = X 1/2e=%L h = |5e%Llog X ],

x0 = x(x) = 5 — VXlog X, and x; := xj(x) = (1 + d)xo for
j=1,2,...,h. Then there is a positive constant ¢; such that the set
E(X) of all x € [X,2X]

Gl — g

og | = a1 = x)e
J

T(xj+1) — 7(x5) —

for some j = 0,1,2,..., h— 1 satisfies u(E(X)) < Xe~ L. Here, u(A) is
the Lebesgue measure of a set A.
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Sketch of proof of almost short intervals result
Let T = X5/6=¢/2_ Then

ko) — o) —bx = 3 CERITEXL ez oq xy2)
[S(p)IST

= > xw(p) + O(X/OHP,
[S(p)I<T

where w(p) = f11+5 u?~1du. Then we have

2X
IE(X,9)] < (5X)_2ecll‘|1/}(x +0x) — P(x) — 5X|2 dx.
X
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Sketch of proof of almost short intervals result
Let T = X5/6=¢/2_ Then
P _ xP
[S(p)I<T
= > xPw(p)+ O(XMEHx),

IS(p)I<T

where w(p) = f11+5 u?~1du. Then we have

2X
£(X, 6)] < / (65) 26 L [io(x + 6x) — 1(x) — Ox? dx.

X
Then we find an upper bound for the integral. We need the inequality

xPrtBati(m—2) gy <

/2X XP1tB+1
X 71— 2 + 1
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We use 1

Y (g TP

— 1

[v2|<T =2l +

for any choice of ;. Then
1-6(T)
E:sz—/ X% dN(o, T)
0

yI<T

1-6(T)
<man+/ X% N(o, T)do
0

1-6(T)
< T(log X) + (log X)B/ X20 T24(1-0) 4,
0

< XZ%e—el,

Here, c; > 0 is a constant which may depend on €. We take ¢; = /2.

Then the result for ¢(x) follows with ¢y = ¢1/2.
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Vinogradov's zero-free region

Let
b

(log T)2/3(loglog T)1/3"

The constant b > 0 in §(T) is given by Vinogradov's zero-free region for
the Riemann zeta function so that

o(T) := (2)

B<1-06(T)

for any zeta-zeros counted in N(o, T). Note that we can take b = 1/57.54
by [F].
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Vinogradov's zero-free region

Let
b

(log T)2/3(loglog T)1/3"

The constant b > 0 in §(T) is given by Vinogradov's zero-free region for
the Riemann zeta function so that

o(T) := (2)

B<1—-6(T)
for any zeta-zeros counted in N(o, T). Note that we can take b = 1/57.54

by [F].
Note that the Riemann Hypothesis states all zeta-zeros satisfy § = %
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Proof of Theorem 1-continued

Let £(X) be the exceptional set. We treat S first over the intervals /; and
J defined as

e Gyl = (5 +809)V 3 +80g)Vx] forj=0,1,2,. h-1, and

J:[0.x- 1
Jj<h
and |g(x;)| < 6log X.
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Proof of Theorem 1-continued

Let £(X) be the exceptional set. We treat S first over the intervals /; and
J defined as

X X .
Ij : (X_]'7Xj+1] = (E +g(XJ)\/)_<7 § +g(XJ+1)\/;i| fOI'_j - 071727 .. h_17 and

J:[0.x- 1
J<h

and |g(x;)| < 6log X.

e The sum over /; is

g()glgézx_/f)()g) \/22_7re_2(“”(xf))2 (1 +0 ((Iog X)e_COL)> :
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Proof of Theorem 1-continued

Let £(X) be the exceptional set. We treat S first over the intervals /; and

J defined as

X X .
Ij : (X_]'7Xj+1] — (E +g(XJ)\/)_<7 § +g(XJ+1)\/;i| fOI'_j - 071727 LR h_17 a‘nd

J:[0.x- 1
J<h

and |g(x;)| < 6log X.

e The sum over /; is

g()glg;zx_/f)()g) \/22_7re_2(“”(xf))2 (1 +0 ((Iog X)e_COL)> :

e The sum over J is by Hoeffding's inequality,

1 <X> < 20X
2% p) —
ped
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Proof of Theorem 1-completion

We now take the sum over j < h. Then we have

E _L o2As())? _ / L2 o d —col
g(Xi+1 g(x e e uKe .
J<h( i+ ) — J))\/_ o Vor

(3)

Putting together the sum over /;'s, we obtain

l X _; o e ol
72 (5) ~ oty | < w07

p<x

The proof of Theorem 1.1 now follows
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Proof of Theorem 2
Let x € [X,2X], h=1log X, c =1/log X. Let I;'s and J defined by

h
—, and
c

lj <§+Cj\/_,§+c(j+l)\/)_<} for 0 < |j| <

Joox- {J h

. h
o<j|<t

We apply Brun-Titchmarsh theorem [MV, Corollary 3.4] on each ;.

w<’2—<+c(j+1)ﬁ)—7r(’—2(+cjﬁ) S%(lJro(@))

_ 4cy/x <1+ 0 (Ioglogx)) .
log x log x
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Then the upper bound of the sum over /; is given by

1 X dcy/x log log x 2 o)
= < j 4
> 2 <p> ~ logx (HO( log x >> 2x - @

pEl;

where e72€)* = max e 2", Summing over li| < h/c and applying
x€[qj,c(j+1)]
(13), we obtain
S5 1 X < 1 440 log log x (5)
2x ey p log x log x

The sum over J is by Hoeffding's inequality,
< 1
(log X)?

The result follows.
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Proof of Theorem 3

Let us first assume 0 < o = liminf,_ o %

. Then for sufficiently large
ny

1la < Snlog n
12 — 2n
Let ¢ = 1/logn and h = log n. Then by Hoeffding's inequality,

ri- g2 ) <

P(TneP,

T, — f‘ > hﬁ) < D 2logn)?
5| = <
We use the subintervals /; and J for |j| < c/h as follows.

. . [ h
i (5+9vn g +cl+1va] for 0<|j] < 2, and

J: [0,n] — U I;.

. h
o<lj|<t
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Then

Z (n) < 2ne—2(|ogn)2.
p

ped

Apply Brun-Titchmarsh inequality and choose b; > 0 so that the
contribution of primes in the intervals /; with by < c|j| < his bounded by

2 Z( ) log n </|t|>bl\/227 = dt+o(loln>> = 22|cn>§n‘

bi<c|j|<h pel;

Then the contribution of primes in the interval
n/2 — biy/n < p < n/2+ byy/nis at least 3|og for sufficiently large n.
Thus,
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Then we have

o (w(Grvi) (5 -nvi)) 2 g (10 ().

Now, this yields the lower bound for the number of primes in the short
interval. There is by, > 0 such that for n > N,

() (G- o) > 22

~ logn

For the converse, assume that there are by, by > 0 such that for n > Np,
the following holds.

(3 o) (3 ) > 22

~ logn

Then by Stirling’s formula, there is an absolute constant b3 > 0 such that,

02 % ()2 (30 (Grond) = (3-n)

g—P|§b1ﬁ
3 n
>2n 2 —2b2b2\/> + O L 2 2 b3.
27rn log n vn log n
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More numerical observations

e The distribution of (S, log(n/2))/2" for n < 85000 seems to be normal
with mean 1 and standard deviation 0.09
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More results and speculations

e If we restrict the primes to arithmetic progression a mod g with
(a,q) = 1, similar results hold with the factor 1/¢(q).
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e Currently, we do not have proof of the last observation. Proving any of

these will require investigating the error term in the Theorem 1 asymptotic
formula.
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e If we restrict the primes to arithmetic progression a mod g with

(a,q) = 1, similar results hold with the factor 1/¢(q).

e Currently, we do not have proof of the last observation. Proving any of
these will require investigating the error term in the Theorem 1 asymptotic
formula.

e A corollary of Theorem (3) is that

a > 0 implies a bound for prime gaps g, < /pn which is stronger than
Cramér’s bound g, < /p;, log p, conditional on the Riemann Hypothesis
(see [C]). To see this, for sufficiently large n, consider m € N with

Pn—1 < m/2 — biy/m < p,. Then we have p,11 < m/2+ b;y/m. Thus,

Pn+1 — Pn < 2b1y/m < C/py.
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More results and speculations

e If we restrict the primes to arithmetic progression a mod g with

(a,q) = 1, similar results hold with the factor 1/¢(q).

e Currently, we do not have proof of the last observation. Proving any of
these will require investigating the error term in the Theorem 1 asymptotic
formula.

e A corollary of Theorem (3) is that

a > 0 implies a bound for prime gaps g, < /pn which is stronger than
Cramér’s bound g, < /p;, log p, conditional on the Riemann Hypothesis
(see [C]). To see this, for sufficiently large n, consider m € N with

Pn—1 < m/2 — biy/m < p,. Then we have p,11 < m/2+ b;y/m. Thus,
Pn+1 — Pn < 2b1y/m < C/py.

o If we take the sequence |ak?], a >0, k =1,2,... instead of primes, we
observe an oscillating main term which resembles a solution to a heat
equation.
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