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Introduction

• Sums of binomial coefficients for n ∈ N,∑
k≥0

(
n

k

)
= 2n,

∑
k≥0

(
n

2k

)
= 2n−1.

• Generally,

∑
k≥0

(
n

ak + b

)
=

1

a

a∑
k=1

ω−bk(1 + ωk)n =
2n

a

a∑
k=1

cosn
kπ

a
cos

(n − 2b)kπ

a

where 0 ≤ b < a, n ≥ 0 and ω = e2πi/a is a primitive a-th root of unity.
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Question

• (A Mathematics Stack Exchange (MSE) question by N. K. Sinha) What
is known about asymptotic order/lower and upper bound of the sum

Sn =
∑
p≤n

(
n

p

)
,

where the sum is over all prime numbers p ≤ n.

Then Sn/2n is the probability that the number of successes in n
independent Bernoulli trials is a prime number, where the probability of
success in each trial is 1/2.

Sungjin Kim (CSUN) Dec 17 3 / 29



Question

• (A Mathematics Stack Exchange (MSE) question by N. K. Sinha) What
is known about asymptotic order/lower and upper bound of the sum

Sn =
∑
p≤n

(
n

p

)
,

where the sum is over all prime numbers p ≤ n.
Then Sn/2n is the probability that the number of successes in n
independent Bernoulli trials is a prime number, where the probability of
success in each trial is 1/2.

Sungjin Kim (CSUN) Dec 17 3 / 29



Notations

• P(A) is the probability of the event A.
• Tn ∼ B(n, 1

2 ) is the binomial distribution with n trials, and the
probability of success is 1/2. Then we have P(Tn = k) =

(n
k

)
/2n for

0 ≤ k ≤ n. Tn has the mean n/2, and the standard deviation
√
n/2.

• P is the set of prime numbers. Thus, P(Tn ∈ P) = Sn/2n.
• π(y) =

∑
p≤y 1 is the number of primes not exceeding y .

• A(n)� B(n) means |A(n)| ≤ cB(n) for some positive absolute constant
c .
•
(x
v

)
= Γ(x+1)

Γ(v+1)Γ(x−v+1) =
( x
x−v
)

is the extension of binomial coefficients

for real x > 0 and v ≥ 0. For any 0 ≤ v1 ≤ v2 ≤ x/2 ≤ v3 ≤ v4 ≤ x , we
have 1 ≤

( x
v1

)
≤
( x
v2

)
≤
( x
x/2

)
≥
( x
v3

)
≥
( x
v4

)
≥ 1.

• Sx =
∑

p≤x
(x
p

)
is an extension of Sn to positive real numbers.

• The letters j , k , n, p are integers. In particular, p denotes a prime. The
letters α, β, ε, t, v , x ,X are real numbers. We write c1, c2, . . . for absolute
positive constants that can be effectively computed.
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Initial comments and an answer on MSE
• (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about 1

log(n/2) . So a rough

guess for the asymptotics is O( 1
logn

( n
n/2

)
), which works out to something

like O(2n/(
√
n log n)). This shouldn’t be hard to get experimental data on.

• (i707107) @QiaochuYuan According to your guess, O(2n/logn) is
plausible since you began with the density.
• (N. K. Sinha) @QiaochuYuan. I think this approach will work. The
square root in the denominator looks a little doubtful.
• (Michael Lugo) Experimentally O(2n/(logn)) looks more likely than the
form with the square root.
• (i707107) Answered with 2n

log n � Sn � 2n log log n
log n where the lower bound

is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n
√

log log n
log n where the

lower bound is a conjecture.
• (i707107) Improved the answer with 2n

log n � Sn � 2n

log n where the lower
bound is a conjecture.

Sungjin Kim (CSUN) Dec 17 5 / 29



Initial comments and an answer on MSE
• (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about 1

log(n/2) . So a rough

guess for the asymptotics is O( 1
logn

( n
n/2

)
), which works out to something

like O(2n/(
√
n log n)). This shouldn’t be hard to get experimental data on.

• (i707107) @QiaochuYuan According to your guess, O(2n/logn) is
plausible since you began with the density.

• (N. K. Sinha) @QiaochuYuan. I think this approach will work. The
square root in the denominator looks a little doubtful.
• (Michael Lugo) Experimentally O(2n/(logn)) looks more likely than the
form with the square root.
• (i707107) Answered with 2n

log n � Sn � 2n log log n
log n where the lower bound

is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n
√

log log n
log n where the

lower bound is a conjecture.
• (i707107) Improved the answer with 2n

log n � Sn � 2n

log n where the lower
bound is a conjecture.

Sungjin Kim (CSUN) Dec 17 5 / 29



Initial comments and an answer on MSE
• (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about 1

log(n/2) . So a rough

guess for the asymptotics is O( 1
logn

( n
n/2

)
), which works out to something

like O(2n/(
√
n log n)). This shouldn’t be hard to get experimental data on.

• (i707107) @QiaochuYuan According to your guess, O(2n/logn) is
plausible since you began with the density.
• (N. K. Sinha) @QiaochuYuan. I think this approach will work. The
square root in the denominator looks a little doubtful.

• (Michael Lugo) Experimentally O(2n/(logn)) looks more likely than the
form with the square root.
• (i707107) Answered with 2n

log n � Sn � 2n log log n
log n where the lower bound

is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n
√

log log n
log n where the

lower bound is a conjecture.
• (i707107) Improved the answer with 2n

log n � Sn � 2n

log n where the lower
bound is a conjecture.

Sungjin Kim (CSUN) Dec 17 5 / 29



Initial comments and an answer on MSE
• (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about 1

log(n/2) . So a rough

guess for the asymptotics is O( 1
logn

( n
n/2

)
), which works out to something

like O(2n/(
√
n log n)). This shouldn’t be hard to get experimental data on.

• (i707107) @QiaochuYuan According to your guess, O(2n/logn) is
plausible since you began with the density.
• (N. K. Sinha) @QiaochuYuan. I think this approach will work. The
square root in the denominator looks a little doubtful.
• (Michael Lugo) Experimentally O(2n/(logn)) looks more likely than the
form with the square root.

• (i707107) Answered with 2n

log n � Sn � 2n log log n
log n where the lower bound

is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n
√

log log n
log n where the

lower bound is a conjecture.
• (i707107) Improved the answer with 2n

log n � Sn � 2n

log n where the lower
bound is a conjecture.

Sungjin Kim (CSUN) Dec 17 5 / 29



Initial comments and an answer on MSE
• (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about 1

log(n/2) . So a rough

guess for the asymptotics is O( 1
logn

( n
n/2

)
), which works out to something

like O(2n/(
√
n log n)). This shouldn’t be hard to get experimental data on.

• (i707107) @QiaochuYuan According to your guess, O(2n/logn) is
plausible since you began with the density.
• (N. K. Sinha) @QiaochuYuan. I think this approach will work. The
square root in the denominator looks a little doubtful.
• (Michael Lugo) Experimentally O(2n/(logn)) looks more likely than the
form with the square root.
• (i707107) Answered with 2n

log n � Sn � 2n log log n
log n where the lower bound

is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n
√

log log n
log n where the

lower bound is a conjecture.
• (i707107) Improved the answer with 2n

log n � Sn � 2n

log n where the lower
bound is a conjecture.

Sungjin Kim (CSUN) Dec 17 5 / 29



Initial comments and an answer on MSE
• (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about 1

log(n/2) . So a rough

guess for the asymptotics is O( 1
logn

( n
n/2

)
), which works out to something

like O(2n/(
√
n log n)). This shouldn’t be hard to get experimental data on.

• (i707107) @QiaochuYuan According to your guess, O(2n/logn) is
plausible since you began with the density.
• (N. K. Sinha) @QiaochuYuan. I think this approach will work. The
square root in the denominator looks a little doubtful.
• (Michael Lugo) Experimentally O(2n/(logn)) looks more likely than the
form with the square root.
• (i707107) Answered with 2n

log n � Sn � 2n log log n
log n where the lower bound

is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n
√

log log n
log n where the

lower bound is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n

log n where the lower
bound is a conjecture.

Sungjin Kim (CSUN) Dec 17 5 / 29



Initial comments and an answer on MSE
• (Qiaochu Yuan) The asymptotics should be dominated by the
distribution of primes near n/2. By the Prime Number Theorem (PNT) we
expect such primes to locally have a density of about 1

log(n/2) . So a rough

guess for the asymptotics is O( 1
logn

( n
n/2

)
), which works out to something

like O(2n/(
√
n log n)). This shouldn’t be hard to get experimental data on.

• (i707107) @QiaochuYuan According to your guess, O(2n/logn) is
plausible since you began with the density.
• (N. K. Sinha) @QiaochuYuan. I think this approach will work. The
square root in the denominator looks a little doubtful.
• (Michael Lugo) Experimentally O(2n/(logn)) looks more likely than the
form with the square root.
• (i707107) Answered with 2n

log n � Sn � 2n log log n
log n where the lower bound

is a conjecture.

• (i707107) Improved the answer with 2n

log n � Sn � 2n
√

log log n
log n where the

lower bound is a conjecture.
• (i707107) Improved the answer with 2n

log n � Sn � 2n

log n where the lower
bound is a conjecture.

Sungjin Kim (CSUN) Dec 17 5 / 29



Numerical observations on (n, (Sn log(n/2))/2n) for large
n’s-by N. K. Sinha

n Sn log(n/2)/2n n Sn log(n/2)/2n

100000 1.069169869 250000 0.986114371

110000 0.94301485 260000 0.965609639

120000 0.917190017 270000 0.973894862

130000 1.009817376 280000 0.99483856

140000 1.027465936 290000 0.953542586

150000 0.974742038 300000 1.028188428

160000 1.029105385 310000 0.993445284

170000 0.965422147 320000 1.017001058

180000 1.119848774 330000 0.869868372

190000 1.054380578 340000 1.073959735

200000 0.948608301 350000 0.873428088

210000 0.972819167 360000 1.090734815

220000 0.904355813 370000 1.024869577

230000 0.973834543 380000 0.965571714

240000 1.039784878 390000 1.025289725
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Main results

Theorem (1)

There is an absolute constant c0 > 0 such that for almost all n,

Sn =
2n

log(n/2)
+ O(2ne−c0(log n)1/3/(log log n)1/3

) as n→∞.

Here, almost all means that the number of n ∈ [1,N] ∩ Z for which the

asymptotic formula fails is O(Ne−c0(log N)1/3/(log log N)1/3
).

Theorem (2)

We have

α := lim inf
n→∞

Sn log n

2n
≤ 1 ≤ lim sup

n→∞

Sn log n

2n
≤ 4.
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Main results

Theorem (3)

The statement α > 0 holds if and only if there are constants b1, b2 > 0
such that

π
(n

2
+ b1

√
n
)
− π

(n
2
− b1

√
n
)
≥ b2

√
n

log n
for all n ≥ N0(b1, b2).
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Proof of Theorem 1

Lemma (Hoeffding’s Inequality)

Let X1, . . . ,Xn be independent bounded random variables with
a ≤ Xi ≤ b for all i , and X = 1

n

∑
Xi . Then for all t ≥ 0,

P
(∣∣X −E(X )

∣∣ ≥ t
)
≤ 2 exp

(
− 2nt2

(b − a)2

)
As a consequence, we have for sufficiently large real x > 0, r > 0, and
Bx =

{
k ≤ x :

∣∣k − x
2

∣∣ ≥ r
√
x
}

,

1

2x

∑
k∈P∩Bx

(
x

k

)
≤ 1

2x

∑
k∈Bx

(
x

k

)
≤ 4e−2r2

.

Here, r may depend on x .
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Main ingredients

We need Stirling’s formula of the form:

Γ(x + 1) =
√

2πx
(x
e

)x (
1 + O

(
1

x

))
.

The following is the zero density estimate by Huxley [H].

Lemma (Huxley 1972)

Given 0 ≤ σ ≤ 1 and T ≥ 2, define

N(σ,T ) = |{ρ = β + iγ : ζ(ρ) = 0, σ ≤ β ≤ 1, |γ| ≤ T}| .

There is an absolute constant B > 0 such that

N(σ,T )� T 2.4(1−σ)(logT )B .

Note that N(σ,T ) = 0 for σ > 1
2 if the Riemann Hypothesis is true.
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Primes in almost short intervals

Denote by

L := L(X ) =
(logX )1/3

(log logX )1/3
.

Corollary

Let X−5/6+ε ≤ δ ≤ X−1/6. There is an absolute positive constant
c0 := c0(ε) > 0 such that for x ∈ [X , 2X ], X ≥ X0(ε)

π(x + δx)− π(x) =
δx

log x
+ O

(
δxe−c0L

)
(1)

holds with an exceptional set E(X , δ) of size at most O(Xe−2c0L).
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Toward multiple short intervals result

• We needed a similar result that applies to multiple short intervals.

Problem 1. If we keep lengths of these short intervals the same, then δ
must be allowed to vary with x .
Problem 2. If we keep δ not vary with x , then the lengths of the short
intervals must vary.
We cannot have both the same length intervals and δ not varying with x .
So, if we try to fix 1, then 2 arises, and vice versa.
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Whac-A-Mole
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Whac-A-Mole
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Resolution: Just live with Problem 2.
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Multiple almost all short intervals

Corollary

Let X ≥ X0, δ = X−1/2e−c0L, h = b5ec0L logX c,
x0 := x0(x) = x

2 −
√
X logX , and xj := xj(x) = (1 + δ)jx0 for

j = 1, 2, . . . , h. Then there is a positive constant c1 such that the set
E(X ) of all x ∈ [X , 2X ]∣∣∣∣π(xj+1)− π(xj)−

xj+1 − xj
log xj

∣∣∣∣ ≥ (xj+1 − xj)e
−c0L

for some j = 0, 1, 2, . . . , h − 1 satisfies µ(E(X ))� Xe−c1L. Here, µ(A) is
the Lebesgue measure of a set A.
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Sketch of proof of almost short intervals result

Let T = X 5/6−ε/2. Then

ψ(x + δx)− ψ(x)− δx =
∑

|=(ρ)|≤T

(x + δx)ρ − xρ

ρ
+ O(X 1/6+ε/2(logX )2)

=
∑

|=(ρ)|≤T

xρw(ρ) + O(X 1/6+2ε/3),

where w(ρ) =
∫ 1+δ

1 uρ−1du. Then we have

|E(X , δ)| ≤
∫ 2X

X
(δx)−2ec1L|ψ(x + δx)− ψ(x)− δx |2 dx .

Then we find an upper bound for the integral. We need the inequality∫ 2X

X
xβ1+β2+i(γ1−γ2) dx � X β1+β2+1

|γ1 − γ2|+ 1
,

Sungjin Kim (CSUN) Dec 17 17 / 29
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We use ∑
|γ2|≤T

1

|γ1 − γ2|+ 1
� (logT )2

for any choice of γ1. Then

∑
|γ|≤T

X 2β = −
∫ 1−θ(T )

0
X 2σdN(σ,T )

� N(0,T ) +

∫ 1−θ(T )

0
X 2σN(σ,T )dσ

� T (logX ) + (logX )B
∫ 1−θ(T )

0
X 2σT 2.4(1−σ)dσ

� X 2e−c2L.

Here, c2 > 0 is a constant which may depend on ε. We take c1 = c2/2.
Then the result for ψ(x) follows with c0 = c1/2.
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Vinogradov’s zero-free region

Let

θ(T ) :=
b

(logT )2/3(log logT )1/3
. (2)

The constant b > 0 in θ(T ) is given by Vinogradov’s zero-free region for
the Riemann zeta function so that

β < 1− θ(T )

for any zeta-zeros counted in N(σ,T ). Note that we can take b = 1/57.54
by [F].

Note that the Riemann Hypothesis states all zeta-zeros satisfy β = 1
2 .
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Proof of Theorem 1-continued
Let E(X ) be the exceptional set. We treat Sx first over the intervals Ij and
J defined as

Ij : (xj , xj+1] =
(x

2
+ g(xj)

√
x ,

x

2
+ g(xj+1)

√
x
]

for j = 0, 1, 2, . . . h−1, and

J : [0, x ]−
⋃
j≤h

Ij ,

and |g(xj)| ≤ 6 logX .

• The sum over Ij is

g(xj+1)− g(xj)

log(x/2)

2√
2π

e−2(g(xj ))2
(

1 + O
(

(logX )e−c0L
))

.

• The sum over J is by Hoeffding’s inequality,

1

2x

∑
p∈J

(
x

p

)
≤ 4e−2(log X )2

.
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(logX )e−c0L
))

.

• The sum over J is by Hoeffding’s inequality,

1

2x

∑
p∈J

(
x

p

)
≤ 4e−2(log X )2

.
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Proof of Theorem 1-continued
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Proof of Theorem 1-completion

We now take the sum over j ≤ h. Then we have∣∣∣∣∣∣
∑
j≤h

(g(xj+1)− g(xj))
2√
2π

e−2(g(xj ))2 −
∫ ∞
−∞

2√
2π

e−2u2
du

∣∣∣∣∣∣� e−c0L.

(3)
Putting together the sum over Ij ’s, we obtain∣∣∣∣∣∣ 1

2x

∑
p≤x

(
x

p

)
− 1

log(x/2)

∣∣∣∣∣∣� (logX )e−c0L.

The proof of Theorem 1.1 now follows
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Proof of Theorem 2

Let x ∈ [X , 2X ], h = logX , c = 1/ logX . Let Ij ’s and J defined by

Ij :
(x

2
+ cj
√
x ,

x

2
+ c(j + 1)

√
x
]

for 0 ≤ |j | ≤ h

c
, and

J : [0, x ]−
⋃

0≤|j |≤ h
c

Ij .

We apply Brun-Titchmarsh theorem [MV, Corollary 3.4] on each Ij .

π
(x

2
+ c(j + 1)

√
x
)
− π

(x
2

+ cj
√
x
)
≤ 2c

√
x

log(c
√
x)

(
1 + O

(
1

log x

))

=
4c
√
x

log x

(
1 + O

(
log log x

log x

))
.
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Then the upper bound of the sum over Ij is given by

1

2x

∑
p∈Ij

(
x

p

)
≤ 4c

√
x

log x

(
1 + O

(
log log x

log x

))
2√
2πx

e−2(crj )
2
, (4)

where e−2(crj )
2

= max
x∈[cj ,c(j+1)]

e−2x2
. Summing over |j | ≤ h/c and applying

(13), we obtain

Sx
2x
− 1

2x

∑
p∈J

(
x

p

)
≤ 1

log x

(
4 + O

(
log log x

log x

))
(5)

The sum over J is by Hoeffding’s inequality,

� 1

(logX )2
.

The result follows.
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Proof of Theorem 3

Let us first assume 0 < α = lim infn→∞
Sn log n

2n . Then for sufficiently large
n,

11α

12
≤ Sn log n

2n
.

Let c = 1/ log n and h = log n. Then by Hoeffding’s inequality,

P
(
Tn ∈ P,

∣∣∣Tn −
n

2

∣∣∣ ≥ h
√
n
)
≤ P

(∣∣∣Tn −
n

2

∣∣∣ ≥ h
√
n
)
≤ 2e−2(log n)2

.

We use the subintervals Ij and J for |j | ≤ c/h as follows.

Ij :
(n

2
+ cj
√
n,

n

2
+ c(j + 1)

√
n
]

for 0 ≤ |j | ≤ h

c
, and

J : [0, n]−
⋃

0≤|j |≤ h
c

Ij .

Sungjin Kim (CSUN) Dec 17 24 / 29



Then ∑
p∈J

(
n

p

)
� 2ne−2(log n)2

.

Apply Brun-Titchmarsh inequality and choose b1 > 0 so that the
contribution of primes in the intervals Ij with b1 ≤ c |j | ≤ h is bounded by

∑
b1≤c|j |≤h

∑
p∈Ij

(
n

p

)
≤ 2n

log n

(∫
|t|≥b1

2√
2π

e−2t2
dt + O

(
1

log n

))
≤ 2nα

2 log n
.

Then the contribution of primes in the interval
n/2− b1

√
n < p ≤ n/2 + b1

√
n is at least 2nα

3 log n for sufficiently large n.
Thus, (

n

n/2

)(
π
(n

2
+ b1

√
n
)
− π

(n
2
− b1

√
n
))
≥ 2nα

3 log n
.
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Then we have

2√
2πn

(
π
(n

2
+ b1

√
n
)
− π

(n
2
− b1

√
n
))
≥ α

3 log n

(
1 + O

(
h3

√
n

))
.

Now, this yields the lower bound for the number of primes in the short
interval. There is b2 > 0 such that for n ≥ N0,

π
(n

2
+ b1

√
n
)
− π

(n
2
− b1

√
n
)
≥ b2

√
n

log n
.

For the converse, assume that there are b1, b2 > 0 such that for n ≥ N0,
the following holds.

π
(n

2
+ b1

√
n
)
− π

(n
2
− b1

√
n
)
≥ b2

√
n

log n
.

Then by Stirling’s formula, there is an absolute constant b3 > 0 such that,

Sn ≥
∑

| n2−p|≤b1
√
n

(
n

p

)
≥
(

n
n
2 + b1

√
n

)(
π
(n

2
+ b1

√
n
)
− π

(n
2
− b1

√
n
))

≥ 2n
2√
2πn

e−2b2
1
b2
√
n

log n

(
1 + O

(
h3

√
n

))
≥ 2nb3

log n
.
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More numerical observations

• The distribution of (Sn log(n/2))/2n for n ≤ 85000 seems to be normal
with mean 1 and standard deviation 0.09.
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More results and speculations

• If we restrict the primes to arithmetic progression a mod q with
(a, q) = 1, similar results hold with the factor 1/φ(q).

• Currently, we do not have proof of the last observation. Proving any of
these will require investigating the error term in the Theorem 1 asymptotic
formula.
• A corollary of Theorem (3) is that
α > 0 implies a bound for prime gaps gn �

√
pn which is stronger than

Cramér’s bound gn �
√
pn log pn conditional on the Riemann Hypothesis

(see [C]). To see this, for sufficiently large n, consider m ∈ N with
pn−1 ≤ m/2− b1

√
m < pn. Then we have pn+1 ≤ m/2 + b1

√
m. Thus,

pn+1 − pn < 2b1
√
m ≤ C

√
pn.

• If we take the sequence bak2c, a > 0, k = 1, 2, . . . instead of primes, we
observe an oscillating main term which resembles a solution to a heat
equation.
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