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Torsion is rare

To quantify the fact that most elliptic curves do not have torsion,
we count as follows.

Every elliptic curve E over Q is uniquely of the form
E:y>?=x3+Ax+B

with A, B € Z satisfying 4A3 + 27B2 # 0 and such that there is no
prime £ such that ¢4 | A and ¢° | B.

For each such elliptic curve E, define its height:
ht £ := max(|44%|,[27B?)).

By Mazur's theorem, there are only finitely many possible groups
G such that E(Q)tors >~ G. For each such group G,
Harron—-Snowden prove that

Ng(H) := #{E : ht(E) < H and E(Q)tors ~ G} < H/(C)

(for H large), where d(G) is given explicitly.



Torsion is rare (Harron-Snowden)

NGg(H) := #{E : ht(E) < H and E(Q)tors =~ G} =< H1/d(G)

G

| # curves = H1/d(6)

7.)27
Z.)3Z
ALY
7./57.
7.)67.
Z)7Z
7./87
7.)97.
7./10Z
7.)12Z
7)27 x 7./27.
7J27 x 7./AZ
7)27 x 7./6Z
7./27 x 1./8L.

H5/6
H1/2
H1/3
H1/4
H1/6
H1/6
H1/12
H1/12
H1/18
H1/18
H1/24
H1/3
H1/6
H1/12
H1/24
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To study #{E : ht(E) < H}, we need to count pairs
(A, B) € Z? such that |A] < (H/4)'/3,|B| < (H/27)Y/?

and then sieve out those with ¢* | A, £° | B for some prime /; the
number with 4A3 + 2782 = 0 are only O(H/®). So we need to
count lattice points in a rectangle with sides of lengths 2(H/4)%/3
and 2(H/27)1/2, as H — oo.

By the Principle of Lipschitz, the number of lattice points in a
region is given by its area up to an error proportional to length of
its (rectifiable) boundary. So the above count is

4(1/4)Y3(1/27)/2H>/% + O(HY?).

The condition at ¢ says we have overcounted and need to multiply
the result by 1 — ¢710; a standard sieve argument then gives

#{E : ht(E) < H} = 2*/3373/2¢(10) "1 H%/® + O(HY/?).
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Explicit asymptotics: #G = 2,3

Harron—Snowden carried out this strategy for the cases #G = 2,3:

#{E : ht(E) < H and E(Q)sors ~ G}

area(Rg) | 1/4(c) 1/e(G)
= V6] + O(H
¢(12/d(G)) ( )
for
G | HY4() | O(HY/=(4))
_ 15/6 O(H/?)
Zj2Z | HY? | O(HY3)
Z/3L | HY/3 | O(HY*)
Question

Without computing the constant, can one use this method to
prove there exists an effectively computable constant for all G?

Question
In the cases above, is there a (meaningful?) secondary term?
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Today, we count elliptic curves with an isogeny (over Q).

For m € ZZL let

“ht(E) < H and
" there exists ¢: E — E’ cyclic of degree m |~

NmolH) = {E

For m =1,2, a generator of the kernel of a cyclic m-isogeny is a
rational m-torsion point, so we are in the previous case:

Nim.cyc(H) = Nz /mz(H) for m = 1,2. (In terms of modular curves,
Xi1(m) = Xo(m) for m=1,2.)

Example

On E: y? = x3 — 1, the subgroup C := (o0, (0, 4+1/—1)) defines a
3-isogeny ¢: E — E/C, where E/C: y?> = x3 + 27 and

$(x,y) = (x — 4/x%,(1 +8/x°)y).
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Main result: counting cyclic 3-isogenies

Theorem (Pizzo—Pomerance-V)
There exist c1, cp € R such that for H > 1,

2

N eye(H) = —=——HY2 4+ c HY3log H + oo HY/® + O(H™/%*).
3,CYC( ) 3\/5((6) 1 g 2 ( )
Moreover,
2 (@)

——— =0.378338... a=—-—5-—~=0.107437...

3V3¢(6) ' ar((4)
where ¢y is explicitly given (as an integral) and c, is effectively
computable.

» Same asymptotic if we count those equipped with a 3-isogeny.

» The main term of order HY/2 counts just those elliptic curves
with A = 0 (having j-invariant 0).

» Matches computations to H = 10%°, suggesting ¢» ~ 0.163.
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A hint of the proof

An elliptic curve E has a 3-isogeny (defined over Q) if and only if
its 3-division polynomial

P(x) = 3x* + 6Ax? + 12Bx — A
has a root in Q; if a € Q is such a root, then in fact a € Z.

So we need to count triples (A, B, a) € Z3 satisfying:

(N1) A#0and1ap(a)=0;
(N2) [4A3],|27B?| < H;
(N3) 4A3 +27B2 +# 0; and
(N4) there is no prime £ with ¢* | A and /8 | B.
We show that this count is of size H/3 log H; we use that
A2
12B = — — 6Aa - 3a°

so it is enough to work with A, a such that a | A%, together with
conditions at 2, 3.
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Theorem (Pizzo-Pomerance-V)
There exist ¢, cp € R such that for H > 1,

2
N3 eye(H) = ————HY? 4+ ciHY3 log H + caHY/3 + O(H"/?4).
3.cve(H) 3V30(6) 1 g 2 (H7=)
Moreover,
2 [@))

———— =0.378338... = ——— =0.107437....

3v/3¢(6) ' 8r%((4)
where ¢y is explicitly given (as an integral) and c, is effectively
computable.

We hope that our method and the lower-order terms in our result
will be useful in understanding counts of rational points on stacky
curves (as in recent work of Ellenberg—Satriano—Zureick-Brown).



