
Counting elliptic curves with
an isogeny of degree three

John Voight
Dartmouth College

Joint work with
Maggie Pizzo and Carl Pomerance

West Coast Number Theory
Asilomar

17 December 2019



Torsion is rare

To quantify the fact that most elliptic curves do not have torsion,
we count as follows.

Every elliptic curve E over Q is uniquely of the form

E : y2 = x3 + Ax + B

with A,B ∈ Z satisfying 4A3 + 27B2 6= 0 and such that there is no
prime ` such that `4 | A and `6 | B.

For each such elliptic curve E , define its height:

htE := max(
∣∣4A3

∣∣ , ∣∣27B2
∣∣).

By Mazur’s theorem, there are only finitely many possible groups
G such that E (Q)tors ' G . For each such group G ,
Harron–Snowden prove that

NG (H) := #{E : ht(E ) ≤ H and E (Q)tors ' G} � H1/d(G)

(for H large), where d(G ) is given explicitly.
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Torsion is rare (Harron–Snowden)

NG (H) := #{E : ht(E ) ≤ H and E (Q)tors ' G} � H1/d(G)

G # curves = H1/d(G)

– H5/6

Z/2Z H1/2

Z/3Z H1/3

Z/4Z H1/4

Z/5Z H1/6

Z/6Z H1/6

Z/7Z H1/12

Z/8Z H1/12

Z/9Z H1/18

Z/10Z H1/18

Z/12Z H1/24

Z/2Z× Z/2Z H1/3

Z/2Z× Z/4Z H1/6

Z/2Z× Z/6Z H1/12

Z/2Z× Z/8Z H1/24



Explicit asymptotics

To study #{E : ht(E ) ≤ H}, we need to count pairs

(A,B) ∈ Z2 such that |A| ≤ (H/4)1/3, |B| ≤ (H/27)1/2

and then sieve out those with `4 | A, `6 | B for some prime `; the
number with 4A3 + 27B2 = 0 are only O(H1/6). So we need to
count lattice points in a rectangle with sides of lengths 2(H/4)1/3

and 2(H/27)1/2, as H →∞.

By the Principle of Lipschitz, the number of lattice points in a
region is given by its area up to an error proportional to length of
its (rectifiable) boundary. So the above count is

4(1/4)1/3(1/27)1/2H5/6 + O(H1/2).

The condition at ` says we have overcounted and need to multiply
the result by 1− `−10; a standard sieve argument then gives

#{E : ht(E ) ≤ H} = 24/33−3/2ζ(10)−1H5/6 + O(H1/2).
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Explicit asymptotics: #G = 2, 3

Harron–Snowden carried out this strategy for the cases #G = 2, 3:

#{E : ht(E ) ≤ H and E (Q)tors ' G}

=
area(RG )

ζ(12/d(G ))
H1/d(G) + O(H1/e(G))

for

G H1/d(G) O(H1/e(G))

– H5/6 O(H1/2)

Z/2Z H1/2 O(H1/3)

Z/3Z H1/3 O(H1/4)

Question
Without computing the constant, can one use this method to
prove there exists an effectively computable constant for all G?

Question
In the cases above, is there a (meaningful?) secondary term?
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Counting isogenies

Today, we count elliptic curves with an isogeny (over Q).

For m ∈ Z≥1, let

Nm,cyc(H) :=

{
E :

ht(E ) ≤ H and
there exists φ : E → E ′ cyclic of degree m

}
.

For m = 1, 2, a generator of the kernel of a cyclic m-isogeny is a
rational m-torsion point, so we are in the previous case:
Nm,cyc(H) = NZ/mZ(H) for m = 1, 2. (In terms of modular curves,
X1(m) = X0(m) for m = 1, 2.)

Example

On E : y2 = x3 − 1, the subgroup C := 〈∞, (0,±
√
−1)〉 defines a

3-isogeny φ : E → E/C , where E/C : y2 = x3 + 27 and
φ(x , y) = (x − 4/x2, (1 + 8/x3)y).



Counting isogenies

Today, we count elliptic curves with an isogeny (over Q).

For m ∈ Z≥1, let

Nm,cyc(H) :=

{
E :

ht(E ) ≤ H and
there exists φ : E → E ′ cyclic of degree m

}
.

For m = 1, 2, a generator of the kernel of a cyclic m-isogeny is a
rational m-torsion point, so we are in the previous case:
Nm,cyc(H) = NZ/mZ(H) for m = 1, 2. (In terms of modular curves,
X1(m) = X0(m) for m = 1, 2.)

Example

On E : y2 = x3 − 1, the subgroup C := 〈∞, (0,±
√
−1)〉 defines a

3-isogeny φ : E → E/C , where E/C : y2 = x3 + 27 and
φ(x , y) = (x − 4/x2, (1 + 8/x3)y).



Counting isogenies

Today, we count elliptic curves with an isogeny (over Q).

For m ∈ Z≥1, let

Nm,cyc(H) :=

{
E :

ht(E ) ≤ H and
there exists φ : E → E ′ cyclic of degree m

}
.

For m = 1, 2, a generator of the kernel of a cyclic m-isogeny is a
rational m-torsion point, so we are in the previous case:
Nm,cyc(H) = NZ/mZ(H) for m = 1, 2. (In terms of modular curves,
X1(m) = X0(m) for m = 1, 2.)

Example

On E : y2 = x3 − 1, the subgroup C := 〈∞, (0,±
√
−1)〉 defines a

3-isogeny φ : E → E/C , where E/C : y2 = x3 + 27 and
φ(x , y) = (x − 4/x2, (1 + 8/x3)y).



Counting isogenies

Today, we count elliptic curves with an isogeny (over Q).

For m ∈ Z≥1, let

Nm,cyc(H) :=

{
E :

ht(E ) ≤ H and
there exists φ : E → E ′ cyclic of degree m

}
.

For m = 1, 2, a generator of the kernel of a cyclic m-isogeny is a
rational m-torsion point, so we are in the previous case:
Nm,cyc(H) = NZ/mZ(H) for m = 1, 2.

(In terms of modular curves,
X1(m) = X0(m) for m = 1, 2.)

Example

On E : y2 = x3 − 1, the subgroup C := 〈∞, (0,±
√
−1)〉 defines a

3-isogeny φ : E → E/C , where E/C : y2 = x3 + 27 and
φ(x , y) = (x − 4/x2, (1 + 8/x3)y).



Counting isogenies

Today, we count elliptic curves with an isogeny (over Q).

For m ∈ Z≥1, let

Nm,cyc(H) :=

{
E :

ht(E ) ≤ H and
there exists φ : E → E ′ cyclic of degree m

}
.

For m = 1, 2, a generator of the kernel of a cyclic m-isogeny is a
rational m-torsion point, so we are in the previous case:
Nm,cyc(H) = NZ/mZ(H) for m = 1, 2. (In terms of modular curves,
X1(m) = X0(m) for m = 1, 2.)

Example

On E : y2 = x3 − 1, the subgroup C := 〈∞, (0,±
√
−1)〉 defines a

3-isogeny φ : E → E/C , where E/C : y2 = x3 + 27 and
φ(x , y) = (x − 4/x2, (1 + 8/x3)y).



Counting isogenies

Today, we count elliptic curves with an isogeny (over Q).

For m ∈ Z≥1, let

Nm,cyc(H) :=

{
E :

ht(E ) ≤ H and
there exists φ : E → E ′ cyclic of degree m

}
.

For m = 1, 2, a generator of the kernel of a cyclic m-isogeny is a
rational m-torsion point, so we are in the previous case:
Nm,cyc(H) = NZ/mZ(H) for m = 1, 2. (In terms of modular curves,
X1(m) = X0(m) for m = 1, 2.)

Example

On E : y2 = x3 − 1, the subgroup C := 〈∞, (0,±
√
−1)〉 defines a

3-isogeny φ : E → E/C , where E/C : y2 = x3 + 27 and
φ(x , y) = (x − 4/x2, (1 + 8/x3)y).



Main result: counting cyclic 3-isogenies

Theorem (Pizzo–Pomerance–V)

There exist c1, c2 ∈ R such that for H ≥ 1,

N3,cyc(H) =
2

3
√

3ζ(6)
H1/2 + c1H

1/3 logH + c2H
1/3 + O(H7/24).

Moreover,

2

3
√

3ζ(6)
= 0.378338 . . . c1 =

c0
8π2ζ(4)

= 0.107437 . . .

where c0 is explicitly given (as an integral) and c2 is effectively
computable.

I Same asymptotic if we count those equipped with a 3-isogeny.

I The main term of order H1/2 counts just those elliptic curves
with A = 0 (having j-invariant 0).

I Matches computations to H = 1025, suggesting c2 ≈ 0.163.
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I Matches computations to H = 1025, suggesting c2 ≈ 0.163.
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A hint of the proof

An elliptic curve E has a 3-isogeny (defined over Q) if and only if
its 3-division polynomial

ψ(x) = 3x4 + 6Ax2 + 12Bx − A2

has a root in Q; if a ∈ Q is such a root, then in fact a ∈ Z.

So we need to count triples (A,B, a) ∈ Z3 satisfying:

(N1) A 6= 0 and ψA,B(a) = 0;

(N2)
∣∣4A3

∣∣ , ∣∣27B2
∣∣ ≤ H;

(N3) 4A3 + 27B2 6= 0; and

(N4) there is no prime ` with `4 | A and `6 | B.

We show that this count is of size H1/3 logH; we use that

12B =
A2

a
− 6Aa− 3a3

so it is enough to work with A, a such that a | A2, together with
conditions at 2, 3.
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Conclusion (Main result again)

Theorem (Pizzo–Pomerance–V)

There exist c1, c2 ∈ R such that for H ≥ 1,

N3,cyc(H) =
2

3
√

3ζ(6)
H1/2 + c1H

1/3 logH + c2H
1/3 + O(H7/24).

Moreover,

2

3
√

3ζ(6)
= 0.378338 . . . c1 =

c0
8π2ζ(4)

= 0.107437 . . .

where c0 is explicitly given (as an integral) and c2 is effectively
computable.

We hope that our method and the lower-order terms in our result
will be useful in understanding counts of rational points on stacky
curves (as in recent work of Ellenberg–Satriano–Zureick-Brown).
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