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The Bernoulli polynomial family of series

For all nonnegative integers N and k, there is an identity of analytic functions

∞∑
m=0

(−1)m+Nb
(k)
m+N(x)

m∑
j=0

(−1)j
(m
j

)
(j + a)−s

=
ζN−k (s − k, a + x)

(s − 1)k
−

N−1∑
m=0

(−1)mb
(k)
m (x)ζN−m(s, a)

for all s ∈ C, provided that a > 0 and a + x > 0.

In this formula, b
(k)
m (x) denotes the m-th Bernoulli polynomial of the second kind of order k,

and ζN(s, a) denotes the Barnes zeta function of order N (with ζ1(s, a) denoting the Hurwitz
zeta function and ζ1(s, 1) the Riemann zeta function).

The zeta functions ζN(s, a) have simple poles at s = 1, ...,N, but the residues on the right
hand side sum to zero, to give an entire function.

The really cool thing is that, for a, x ∈ Q and s ∈ Z, the exact same series of rational
numbers converges in a p-adic metric, when x ∈ Zp and |a|p > 1, to the entirely analogous
combination of p-adic zeta functions.
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Bernoulli polynomials

The order z Bernoulli polynomials B
(z)
n (x) are defined by(
t

et − 1

)z

ext =
∞∑
n=0

B
(z)
n (x)

tn

n!
.

When z = 1 we have the usual Bernoulli polynomials Bn(x) := B
(1)
n (x). When x = 0 we

have order z Bernoulli numbers B
(z)
n := B

(z)
n (0). In particular, Bn := B

(1)
n (0).

The order z Bernoulli polynomials of the second kind b
(z)
n (x) are defined by(

t

log(1 + t)

)z

(1 + t)x =
∞∑
n=0

b
(z)
n (x)tn.

Differences and derivatives satisfy

B
(z)
n (x + 1)− B

(z)
n (x) = nB

(z−1)
n−1 (x),

∂

∂x
B

(z)
n (x) = nB

(z)
n−1(x),

b
(z)
n (x + 1)− b

(z)
n (x) = b

(z)
n−1(x),

∂

∂x
b

(z)
n (x) = b

(z−1)
n−1 (x).

Either kind of Bernoulli polynomial may be converted to the other by means of

n!b
(z)
n (x) = B

(n−z+1)
n (x + 1), B

(z)
n (x) = n!b

(n−z+1)
n (x − 1).
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Hurwitz multiple zeta functions

For positive integers r , the Hurwitz zeta function of order r is defined by

ζr (s, a) =
∞∑

t1=0

· · ·
∞∑
tr =0

(a + t1 + · · ·+ tr )−s

for <(s) > r and <(a) > 0, and continued meromorphically to s ∈ C with simple poles at
s = 1, 2, ..., r . Note that ζ1(s, a) is the Hurwitz zeta function, and ζ0(s, a) = a−s by convention.

Its values at the negative integers, and residues at its poles, are given by

ζr (−k, a) =
(−1)rk!

(r + k)!
B

(r)
r+k (a), Res

s = k
ζr (s, a) =

(−1)r−kB
(r)
r−k (a)

(k − 1)!(r − k)!
(k ∈ {1, ..., r}).

For nonnegative integers r , we define ζ−r (s, a) by

ζ−r (s, a) =
r∑

j=0

(r
j

)
(−1)j (a + j)−s .

With this definition we have difference and derivative identities

ζr (s, a)− ζr (s, a + 1) = ζr−1(s, a),
∂

∂a
ζr (s, a) = −sζr (s + 1, a)

for all integers r ∈ Z.
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The weighted Stirling number family of series

For all positive integers k and nonnegative integers N, there is an identity of analytic functions

∞∑
m=0

(−1)m+N s(m + N, k|r)

(m + N)!

m∑
j=0

(−1)j
(m
j

)
(j + a)−s

= (−1)k
(s + k − 1

k

)
ζN(s + k, a− r)−

N−1∑
m=k

(−1)m
s(m, k|r)

m!
ζN−m(s, a)

for all s ∈ C, provided that a > 0 and a− r > 0.

In this formula s(m, k|r) is the weighted Stirling number of the first kind, defined by

(1 + t)−r (log(1 + t))k = k!
∞∑

m=k

s(m, k|r)
tm

m!
or (x)m =

m∑
k=0

s(m, k|r)(x + r)k .

Again the zeta functions ζN(s, a) have simple poles at s = 1, ...,N, but the residues on the
right hand side sum to zero, to give an entire function. The formula also makes good sense
p-adically, when s, x ∈ Zp and |a|p > 1.
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Hyperharmonic special cases

Taking k = 1 in this theorem gives the following corollary: For all nonnegative integers r and N
we have

∞∑
m=0

H
[r ]
m+N

m∑
j=0

(−1)j
(m
j

)
(j + a)−s = sζN(s + 1, a− r)−

N−1∑
m=1

H
[r ]
m ζN−m(s, a)

for all s ∈ C and a > r .

Here H
[r ]
m denotes the hyperharmonic number of order r , defined by H

[0]
m = 1

m
for m > 0,

H
[r ]
0 = 0, and

H
[r ]
m =

m∑
i=1

H
[r−1]
i for m > 0.

So H
[1]
m = Hm is the usual harmonic number.

In particular, taking N = 1 then gives

∞∑
m=0

H
[r ]
m+1

m∑
j=0

(−1)j
(m
j

)
(j + a)−s = sζ(s + 1, a− r).

The r = 0 case of this formula was the original (1930) formula of Hasse, and the r = 1 case
was recently given by Blagouchine.
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The r = 0 case of this formula was the original (1930) formula of Hasse, and the r = 1 case
was recently given by Blagouchine.
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p-adic numbers and power functions

For a prime number p, and x ∈ Q×, write x = pk (r/s) with (p, r) = (p, s) = (r , s) = 1 and
k ∈ Z; the integer k is the p-adic valuation of x , denoted k = νp(x); set νp(0) = +∞.

Define |x |p = p−νp(x), the p-adic absolute value, for x ∈ Q.

“High powers of p are small”

Field Qp = completion of Q with respect to | · |p

Ring Zp = {x ∈ Qp : |x |p ≤ 1} = {x ∈ Qp : νp(x) ≥ 0}

Field Cp = completion of an algebraic closure Q̄p of Qp . Note Cp
∼= C, but Cp 6∼= C.

Let 〈·〉 denote the projection onto the third factor in the internal direct product decomposition
C×p ∼= pQ × µ× B(1, 1−) where µ denotes the group of roots of unity of order not divisible by p.

We can then define 〈a〉s =
∑∞

n=0

(s
n

)
(〈a〉 − 1)n for a ∈ C×p and s ∈ Zp . This is (at least) a C∞

function of s ∈ Zp , and locally analytic as a function of a ∈ C×p .

The Iwasawa logarithm logp is defined on C×p by logp a = −
∑∞

n=1(1− 〈a〉)n/n.

The factor 〈a〉/a, which appears in some of our p-adic formulas, is locally constant and algebraic
with p-adic logarithm zero.
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p-adic Hurwitz multiple zeta functions

For positive integer orders r , the complex and p-adic multiple zeta functions of order r defined by

ζr (s, a) =
∑
t̄∈Zr

0

(a + |t̄|)−s , ζp,r (s, a) =
1

(s − 1) · · · (s − r)

∫
Zr
p

(a + |t̄|)r

〈a + |t̄|〉s
dt̄,

where |t̄| = t1 + · · ·+ tr denotes the “length” of the vector t̄ = (t1, ..., tr ). The p-adic function
ζp,r (s, a) is (at least) a C∞ of s ∈ Zp \ {1, ..., r} when |a|p > 1.

When r = 0 these are just the functions ζ0(s, a) = a−s and ζp,0(s, a) = 〈a〉−s .

For negative integer orders, we have

ζp,−r (s, a) =
r∑

j=0

(r
j

)
(−1)j 〈a + j〉−s ,

so that (−1)r ζp,−r (s, a) is the r -th forward difference of the power function 〈a〉−s with
respect to the a parameter.

For any integer r , positive or negative, the a-derivative of ζp,r (s, a) is an s-shift

∂

∂a
ζp,r (s, a) = −s

〈a〉
a
ζp,r (s + 1, a).
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p-adic versions of the series

For all nonnegative integers N and k, there is an identity of p-adic analytic functions

∞∑
m=0

(−1)m+Nb
(k)
m+N(x)

m∑
j=0

(−1)j
(m
j

)
〈j + a〉−s

=

(
a

〈a〉

)k ζp,N−k (s − k, a + x)

(s − 1)k
−

N−1∑
m=0

(−1)mb
(k)
m (x)ζp,N−m(s, a)

for s, x ∈ Zp , provided that |a|p > 1.

For all positive integers k and nonnegative integers N, there is an identity of p-adic analytic
functions

∞∑
m=0

(−1)m+N s(m + N, k|r)

(m + N)!

m∑
j=0

(−1)j
(m
j

)
〈j + a〉−s

=

(
〈a〉
a

)k

(−1)k
(s + k − 1

k

)
ζp,N(s + k, a− r)−

N−1∑
m=k

(−1)m
s(m, k|r)

m!
ζp,N−m(s, a)

for s, r ∈ Zp , provided that |a|p > 1.
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p-adic Bernoulli series examples at positive integers

Taking N = 1, k = 1, n = 0 yields

∞∑
m=0

(−1)mm!bm+1(x)

a(a + 1) · · · (a + m)
=

log(a + x)− ψ(a) in R, if a > 0 and a + x > 0,

logp(a + x)− ψp(a) in Cp , if |a|p > 1 and x ∈ Zp .

Taking N = 1, k = 1, n = 1, a = 1/2 gives

∞∑
m=0

(−1)m4m+1bm+1(x)Om+1

(2m + 1)
(2m
m

) =


2

1+2x
− 3ζ(2) in R, if x > −1/2,

2
1+2x

− 4ζ2,1(2, 1
2

)

in C2, if x ∈ Z2,

where Om :=
∑m

j=1
1

2j−1
is the m-th “odd harmonic” number.

Taking N = 1, k = 1, n = 0, x = −1, a = 3/2 gives

∞∑
m=0

(−1)m4m+1B
(m+1)
m+1

(m + 1)(2m + 3)(m + 1)!
(2m+2
m+1

) =

− log 2− ψ(3/2) in R,

− log2 2

− ψ2(3/2) in Q2.
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p-adic Bernoulli series examples at positive integers
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p-adic Stirling series examples at positive integers

Taking N = 1, k = 1, n = 0, a = r + 1
2

yields

∞∑
m=0

4m+1
(2r
r

)
H

[r ]
m+1

(2r + 2m + 1)
(2m+2r

m+r

)(m+r
r

) =

6ζ(2) = π2 in R,

8ζ2,1(2, 1
2

) = 0 in Q2.

Taking N = 1, k = 1, n = 1, a = r + 1
2

yields

∞∑
m=0

4m+1
(2r
r

)
H

[r ]
m+1(Or+m+1 − Or )

(2r + 2m + 1)
(2m+2r

m+r

)(m+r
r

) =

7ζ(3) in R,

16ζ2,1(3, 1
2

) in Q2.

where Om :=
∑m

j=1
1

2j−1
is the m-th “odd harmonic” number.
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The field with one element is Fun

Disclaimer: There is no such thing as a field with one element. We use Fq to denote the
unique field with q elements; such a field exists if and only if q is a power of some prime p.

In a 1957 paper, Jacques Tits began dreaming of a geometry over a hypothetical field with
one element. The idea was to explain certain phenomena in algebraic combinatorics,
combinatorial geometries, and homotopy theory that were not well explained by the theory of
schemes.

In the 1990s, Manin began considering that the Riemann hypothesis could possibly be
proved if one could construe the integers Z as an algebra over F1. We know we can prove
the analogous Riemann hypothesis for zeta functions of function fields in positive
characteristic. The dream is that if you could view the integers as a curve over a field with
one element, then you could mimic Weil’s proof and win yourself a million dollars.

Cristophe Soulé (2004) first proposed a construction of varieties over F1. Connes and
Consani (2010) described schemes over F1, and also zeta functions over F1 for varieties
satisfying a weakened version of Soulé’s condition. In their heuristic, one has the zeta
function for the integers as a curve of infinite genus over F1, whose “counting function” is a
distribution, and the corresponding zeta function as a Mellin transform of this distribution.

Kurokawa, Tanaka, and others realized that you needed a regularization of the
Connes-Consani zeta function to accomodate varieties with counting functions which don’t
vanish at q = 1.
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Absolute zeta functions

Let N(x) be a suitable “counting function” defined on (0,∞) satisfying an automorphic relation
of the form

N

(
1

x

)
= Cx−DN(x)

where D is an integer and C = ±1.

A prototypical example occurs when X is a scheme over Z which admits a polynomial N
such that N(q) = |X/Fq | for all prime powers q.

We define the absolute Hurwitz zeta function associated to N (or to X/F1) by

ZN(w , s) =
1

Γ(w)

∫ ∞
0

N(et)e−st tw−1 dt

and the absolute Hasse zeta function associated to N (or to X/F1) by

ζN(s) = exp

(
∂

∂w
ZN(w , s)

∣∣∣
w=0

)
.

In the case of schemes X over Z satisfying Soulé’s condition, this absolute zeta function
ζX/F1

(s) coincides with the “limit” as p → 1 of its congruence zeta functions in

characteristic p, normalized by (p − 1)N(1).

The connection to my work on zeta expansions stems from the relation of ζGn
m/F1

to the

negative-order zeta functions ζ−n(s, a).
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ζX/F1

(s) coincides with the “limit” as p → 1 of its congruence zeta functions in

characteristic p, normalized by (p − 1)N(1).

The connection to my work on zeta expansions stems from the relation of ζGn
m/F1

to the

negative-order zeta functions ζ−n(s, a).

Paul Thomas Young (College of Charleston) Absolute limit formulas for Hurwitz zeta functions December 17, 2019 13 / 18



Absolute zeta functions

Let N(x) be a suitable “counting function” defined on (0,∞) satisfying an automorphic relation
of the form

N

(
1

x

)
= Cx−DN(x)

where D is an integer and C = ±1.

A prototypical example occurs when X is a scheme over Z which admits a polynomial N
such that N(q) = |X/Fq | for all prime powers q.

We define the absolute Hurwitz zeta function associated to N (or to X/F1) by

ZN(w , s) =
1

Γ(w)

∫ ∞
0

N(et)e−st tw−1 dt

and the absolute Hasse zeta function associated to N (or to X/F1) by

ζN(s) = exp

(
∂

∂w
ZN(w , s)

∣∣∣
w=0

)
.

In the case of schemes X over Z satisfying Soulé’s condition, this absolute zeta function
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Absolute limit formulas for Hurwitz zeta functions

Denote by γk (a) the constant term in the Laurent expansion of the order k zeta function ζk (s, a)
at its rightmost pole, that is,

γk (a) = lim
s→k

(
ζk (s, a)−

1

(k − 1)!(s − k)

)
.

Theorem. If a > 0 and a− r > 0 then for all positive integers k we have

γk (a− r) +
Hk−1

(k − 1)!
= k

∞∑
n=0

(−1)ns(n + k, k|r)

(n + k)!
log ζGn

m/F1
(a + n).

In particular, for every nonnegative integer r we have

γ(a) =
∞∑
n=0

H
[r ]
n+1 log ζGn

m/F1
(a + r + n),

where H
[r ]
n denotes the hyperharmonic number of order r .

The key observation in the proof is

∂

∂s
ζ−n(s, a)

∣∣∣∣∣
s=0

=
∂

∂s
ZGn

m/F1
(s, a + n)

∣∣∣∣∣
s=0

= log ζGn
m/F1

(a + n).

This was observed in the case r = 0 by Kurokawa and Tanaka in 2018. In the case r = 0,
a = 1, k = 1, it reduces to a 1776 result of Euler.
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n=0

(−1)ns(n + k, k|r)

(n + k)!
log ζGn

m/F1
(a + n).

In particular, for every nonnegative integer r we have

γ(a) =
∞∑
n=0

H
[r ]
n+1 log ζGn

m/F1
(a + r + n),

where H
[r ]
n denotes the hyperharmonic number of order r .

The key observation in the proof is

∂

∂s
ζ−n(s, a)

∣∣∣∣∣
s=0

=
∂

∂s
ZGn

m/F1
(s, a + n)

∣∣∣∣∣
s=0

= log ζGn
m/F1

(a + n).

This was observed in the case r = 0 by Kurokawa and Tanaka in 2018. In the case r = 0,
a = 1, k = 1, it reduces to a 1776 result of Euler.
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More absolute limit formulas for Hurwitz zeta functions

Theorem. If a > 0 and a + x > 0 then for all positive integers k we have

γk (a) +
log(a + x) + Hk−1

(k − 1)!
+

k−1∑
n=1

(−1)nb
(k)
n (x)ζk−n(k, a)

= −
∞∑
n=0

(−1)n+kb
(k)
n+k (x)ZGn

m/F1
(k, a + n).

These series differ in spirit from those of Kurokawa and Tanaka, as they involve the absolute
Hurwitz zeta function for Gn

m which occurs in the regularization process for the absolute
Hasse zeta function.

Examples. Taking k = 1, a = 1, x = 0 gives

γ =
∞∑
n=0

(−1)nbn+1ZGn
m/F1

(1, n + 1).

Taking k = 2, a = 1, x = 0 gives

γ =
ζ(2)

2
−
∞∑
n=0

(−1)nb
(2)
n+2ZGn

m/F1
(2, n + 1).
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p-adic absolute limit formulas for Hurwitz zeta functions

Denote by γp,k (a) the constant term in the Laurent expansion of the order k p-adic zeta function
ζp,k (s, a) at its rightmost pole, that is,

γp,k (a) = lim
s→k

(
ζp,k (s, a)−

(a/〈a〉)k

(k − 1)!(s − k)

)
.

Theorem. If |a|p > 1 and r ∈ Zp then for all positive integers k we have(
〈a〉
a

)k

γp,k (a− r) +
Hk−1

(k − 1)!
= k

∞∑
n=0

(−1)ns(n + k, k|r)

(n + k)!
logp ζGn

m/F1
(a + n).

In particular, for every nonnegative integer r we have

〈a〉
a
γp,1(a) =

∞∑
n=0

H
[r ]
n+1 logp ζGn

m/F1
(a + r + n).

Recall that the heuristic of F1 is that one constructs a variety over actual finite fields Fq and
then hypocritically takes the “limit” of the counting function, and zeta function, as q → 1.
But in the p-adic world there is no hypocrisy because 1 actually is a p-adic limit point of the
set of prime powers!
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A very rough idea in progress

In the two forthcoming papers I have several other series for higher zeta functions and higher
Euler constants.

Kurokawa, Tanaka, and others have a program of analyzing the “regularized Euler constant”
of schemes and algebraic groups.

By my analysis, I expect one can generally express absolute zeta functions of schemes and
algebraic groups as convergent series of absolute zeta functions of Gn

m/F1. I want to
understand the special role of Gn

m and the algebraic interpretation of these series.

I suspect that the fact that these series expansions are also valid p-adically is giving
additional algebraic information, but I don’t have a precise statement yet.
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Thank You!
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