

Absolute limit formulas for Hurwitz zeta functions

Paul Thomas Young

College of Charleston

December 17, 2019

The Bernoulli polynomial family of series

For all nonnegative integers N and k , there is an identity of analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} b_{m+N}^{(k)}(x) \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ &= \frac{\zeta_{N-k}(s-k, a+x)}{(s-1)_k} - \sum_{m=0}^{N-1} (-1)^m b_m^{(k)}(x) \zeta_{N-m}(s, a) \end{aligned}$$

for all $s \in \mathbb{C}$, provided that $a > 0$ and $a + x > 0$.

The Bernoulli polynomial family of series

For all nonnegative integers N and k , there is an identity of analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} b_{m+N}^{(k)}(x) \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ &= \frac{\zeta_{N-k}(s-k, a+x)}{(s-1)_k} - \sum_{m=0}^{N-1} (-1)^m b_m^{(k)}(x) \zeta_{N-m}(s, a) \end{aligned}$$

for all $s \in \mathbb{C}$, provided that $a > 0$ and $a + x > 0$.

- In this formula, $b_m^{(k)}(x)$ denotes the m -th *Bernoulli polynomial of the second kind* of order k , and $\zeta_N(s, a)$ denotes the Barnes zeta function of order N (with $\zeta_1(s, a)$ denoting the Hurwitz zeta function and $\zeta_1(s, 1)$ the Riemann zeta function).

The Bernoulli polynomial family of series

For all nonnegative integers N and k , there is an identity of analytic functions

$$\begin{aligned} \sum_{m=0}^{\infty} (-1)^{m+N} b_{m+N}^{(k)}(x) \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ = \frac{\zeta_{N-k}(s-k, a+x)}{(s-1)_k} - \sum_{m=0}^{N-1} (-1)^m b_m^{(k)}(x) \zeta_{N-m}(s, a) \end{aligned}$$

for all $s \in \mathbb{C}$, provided that $a > 0$ and $a + x > 0$.

- In this formula, $b_m^{(k)}(x)$ denotes the *m-th Bernoulli polynomial of the second kind* of order k , and $\zeta_N(s, a)$ denotes the Barnes zeta function of order N (with $\zeta_1(s, a)$ denoting the Hurwitz zeta function and $\zeta_1(s, 1)$ the Riemann zeta function).
- The zeta functions $\zeta_N(s, a)$ have simple poles at $s = 1, \dots, N$, but the residues on the right hand side sum to zero, to give an entire function.

The Bernoulli polynomial family of series

For all nonnegative integers N and k , there is an identity of analytic functions

$$\begin{aligned} \sum_{m=0}^{\infty} (-1)^{m+N} b_{m+N}^{(k)}(x) \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ = \frac{\zeta_{N-k}(s-k, a+x)}{(s-1)_k} - \sum_{m=0}^{N-1} (-1)^m b_m^{(k)}(x) \zeta_{N-m}(s, a) \end{aligned}$$

for all $s \in \mathbb{C}$, provided that $a > 0$ and $a + x > 0$.

- In this formula, $b_m^{(k)}(x)$ denotes the m -th *Bernoulli polynomial of the second kind* of order k , and $\zeta_N(s, a)$ denotes the Barnes zeta function of order N (with $\zeta_1(s, a)$ denoting the Hurwitz zeta function and $\zeta_1(s, 1)$ the Riemann zeta function).
- The zeta functions $\zeta_N(s, a)$ have simple poles at $s = 1, \dots, N$, but the residues on the right hand side sum to zero, to give an entire function.
- The really cool thing is that, for $a, x \in \mathbb{Q}$ and $s \in \mathbb{Z}$, the exact same series of rational numbers converges in a p -adic metric, when $x \in \mathbb{Z}_p$ and $|a|_p > 1$, to the entirely analogous combination of p -adic zeta functions.

Bernoulli polynomials

The *order z Bernoulli polynomials* $B_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{e^t - 1}\right)^z e^{xt} = \sum_{n=0}^{\infty} B_n^{(z)}(x) \frac{t^n}{n!}.$$

Bernoulli polynomials

The *order z Bernoulli polynomials* $B_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{e^t - 1}\right)^z e^{xt} = \sum_{n=0}^{\infty} B_n^{(z)}(x) \frac{t^n}{n!}.$$

- When $z = 1$ we have the usual Bernoulli polynomials $B_n(x) := B_n^{(1)}(x)$. When $x = 0$ we have order z Bernoulli numbers $B_n^{(z)} := B_n^{(z)}(0)$. In particular, $B_n := B_n^{(1)}(0)$.

Bernoulli polynomials

The *order z Bernoulli polynomials* $B_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{e^t - 1}\right)^z e^{xt} = \sum_{n=0}^{\infty} B_n^{(z)}(x) \frac{t^n}{n!}.$$

- When $z = 1$ we have the usual Bernoulli polynomials $B_n(x) := B_n^{(1)}(x)$. When $x = 0$ we have order z Bernoulli numbers $B_n^{(z)} := B_n^{(z)}(0)$. In particular, $B_n := B_n^{(1)}(0)$.
- The *order z Bernoulli polynomials of the second kind* $b_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{\log(1+t)}\right)^z (1+t)^x = \sum_{n=0}^{\infty} b_n^{(z)}(x) t^n.$$

Bernoulli polynomials

The *order z Bernoulli polynomials* $B_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{e^t - 1}\right)^z e^{xt} = \sum_{n=0}^{\infty} B_n^{(z)}(x) \frac{t^n}{n!}.$$

- When $z = 1$ we have the usual Bernoulli polynomials $B_n(x) := B_n^{(1)}(x)$. When $x = 0$ we have order z Bernoulli numbers $B_n^{(z)} := B_n^{(z)}(0)$. In particular, $B_n := B_n^{(1)}(0)$.
- The *order z Bernoulli polynomials of the second kind* $b_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{\log(1+t)}\right)^z (1+t)^x = \sum_{n=0}^{\infty} b_n^{(z)}(x) t^n.$$

- Differences and derivatives satisfy

$$B_n^{(z)}(x+1) - B_n^{(z)}(x) = n B_{n-1}^{(z-1)}(x), \quad \frac{\partial}{\partial x} B_n^{(z)}(x) = n B_{n-1}^{(z)}(x),$$

$$b_n^{(z)}(x+1) - b_n^{(z)}(x) = b_{n-1}^{(z)}(x), \quad \frac{\partial}{\partial x} b_n^{(z)}(x) = b_{n-1}^{(z-1)}(x).$$

Bernoulli polynomials

The *order z Bernoulli polynomials* $B_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{e^t - 1}\right)^z e^{xt} = \sum_{n=0}^{\infty} B_n^{(z)}(x) \frac{t^n}{n!}.$$

- When $z = 1$ we have the usual Bernoulli polynomials $B_n(x) := B_n^{(1)}(x)$. When $x = 0$ we have order z Bernoulli numbers $B_n^{(z)} := B_n^{(z)}(0)$. In particular, $B_n := B_n^{(1)}(0)$.
- The *order z Bernoulli polynomials of the second kind* $b_n^{(z)}(x)$ are defined by

$$\left(\frac{t}{\log(1+t)}\right)^z (1+t)^x = \sum_{n=0}^{\infty} b_n^{(z)}(x) t^n.$$

- Differences and derivatives satisfy

$$B_n^{(z)}(x+1) - B_n^{(z)}(x) = n B_{n-1}^{(z-1)}(x), \quad \frac{\partial}{\partial x} B_n^{(z)}(x) = n B_{n-1}^{(z)}(x),$$

$$b_n^{(z)}(x+1) - b_n^{(z)}(x) = b_{n-1}^{(z)}(x), \quad \frac{\partial}{\partial x} b_n^{(z)}(x) = b_{n-1}^{(z-1)}(x).$$

- Either kind of Bernoulli polynomial may be converted to the other by means of

$$n! b_n^{(z)}(x) = B_n^{(n-z+1)}(x+1), \quad B_n^{(z)}(x) = n! b_n^{(n-z+1)}(x-1).$$

Hurwitz multiple zeta functions

For positive integers r , the Hurwitz zeta function of order r is defined by

$$\zeta_r(s, a) = \sum_{t_1=0}^{\infty} \cdots \sum_{t_r=0}^{\infty} (a + t_1 + \cdots + t_r)^{-s}$$

for $\Re(s) > r$ and $\Re(a) > 0$, and continued meromorphically to $s \in \mathbb{C}$ with simple poles at $s = 1, 2, \dots, r$. Note that $\zeta_1(s, a)$ is the Hurwitz zeta function, and $\zeta_0(s, a) = a^{-s}$ by convention.

Hurwitz multiple zeta functions

For positive integers r , the Hurwitz zeta function of order r is defined by

$$\zeta_r(s, a) = \sum_{t_1=0}^{\infty} \cdots \sum_{t_r=0}^{\infty} (a + t_1 + \cdots + t_r)^{-s}$$

for $\Re(s) > r$ and $\Re(a) > 0$, and continued meromorphically to $s \in \mathbb{C}$ with simple poles at $s = 1, 2, \dots, r$. Note that $\zeta_1(s, a)$ is the Hurwitz zeta function, and $\zeta_0(s, a) = a^{-s}$ by convention.

- Its values at the negative integers, and residues at its poles, are given by

$$\zeta_r(-k, a) = \frac{(-1)^r k!}{(r+k)!} B_{r+k}^{(r)}(a), \quad \operatorname{Res}_{s=k} \zeta_r(s, a) = \frac{(-1)^{r-k} B_{r-k}^{(r)}(a)}{(k-1)!(r-k)!} \quad (k \in \{1, \dots, r\}).$$

Hurwitz multiple zeta functions

For positive integers r , the Hurwitz zeta function of order r is defined by

$$\zeta_r(s, a) = \sum_{t_1=0}^{\infty} \cdots \sum_{t_r=0}^{\infty} (a + t_1 + \cdots + t_r)^{-s}$$

for $\Re(s) > r$ and $\Re(a) > 0$, and continued meromorphically to $s \in \mathbb{C}$ with simple poles at $s = 1, 2, \dots, r$. Note that $\zeta_1(s, a)$ is the Hurwitz zeta function, and $\zeta_0(s, a) = a^{-s}$ by convention.

- Its values at the negative integers, and residues at its poles, are given by

$$\zeta_r(-k, a) = \frac{(-1)^r k!}{(r+k)!} B_{r+k}^{(r)}(a), \quad \operatorname{Res}_{s=k} \zeta_r(s, a) = \frac{(-1)^{r-k} B_{r-k}^{(r)}(a)}{(k-1)!(r-k)!} \quad (k \in \{1, \dots, r\}).$$

- For nonnegative integers r , we define $\zeta_{-r}(s, a)$ by

$$\zeta_{-r}(s, a) = \sum_{j=0}^r \binom{r}{j} (-1)^j (a+j)^{-s}.$$

Hurwitz multiple zeta functions

For positive integers r , the Hurwitz zeta function of order r is defined by

$$\zeta_r(s, a) = \sum_{t_1=0}^{\infty} \cdots \sum_{t_r=0}^{\infty} (a + t_1 + \cdots + t_r)^{-s}$$

for $\Re(s) > r$ and $\Re(a) > 0$, and continued meromorphically to $s \in \mathbb{C}$ with simple poles at $s = 1, 2, \dots, r$. Note that $\zeta_1(s, a)$ is the Hurwitz zeta function, and $\zeta_0(s, a) = a^{-s}$ by convention.

- Its values at the negative integers, and residues at its poles, are given by

$$\zeta_r(-k, a) = \frac{(-1)^r k!}{(r+k)!} B_{r+k}^{(r)}(a), \quad \operatorname{Res}_{s=k} \zeta_r(s, a) = \frac{(-1)^{r-k} B_{r-k}^{(r)}(a)}{(k-1)!(r-k)!} \quad (k \in \{1, \dots, r\}).$$

- For nonnegative integers r , we define $\zeta_{-r}(s, a)$ by

$$\zeta_{-r}(s, a) = \sum_{j=0}^r \binom{r}{j} (-1)^j (a+j)^{-s}.$$

- With this definition we have difference and derivative identities

$$\zeta_r(s, a) - \zeta_r(s, a+1) = \zeta_{r-1}(s, a), \quad \frac{\partial}{\partial a} \zeta_r(s, a) = -s \zeta_r(s+1, a)$$

for all integers $r \in \mathbb{Z}$.

The weighted Stirling number family of series

For all positive integers k and nonnegative integers N , there is an identity of analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} \frac{s(m+N, k|r)}{(m+N)!} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ &= (-1)^k \binom{s+k-1}{k} \zeta_N(s+k, a-r) - \sum_{m=k}^{N-1} (-1)^m \frac{s(m, k|r)}{m!} \zeta_{N-m}(s, a) \end{aligned}$$

for all $s \in \mathbb{C}$, provided that $a > 0$ and $a - r > 0$.

The weighted Stirling number family of series

For all positive integers k and nonnegative integers N , there is an identity of analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} \frac{s(m+N, k|r)}{(m+N)!} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ &= (-1)^k \binom{s+k-1}{k} \zeta_N(s+k, a-r) - \sum_{m=k}^{N-1} (-1)^m \frac{s(m, k|r)}{m!} \zeta_{N-m}(s, a) \end{aligned}$$

for all $s \in \mathbb{C}$, provided that $a > 0$ and $a - r > 0$.

- In this formula $s(m, k|r)$ is the *weighted Stirling number of the first kind*, defined by

$$(1+t)^{-r} (\log(1+t))^k = k! \sum_{m=k}^{\infty} s(m, k|r) \frac{t^m}{m!} \quad \text{or} \quad (x)_m = \sum_{k=0}^m s(m, k|r) (x+r)^k.$$

The weighted Stirling number family of series

For all positive integers k and nonnegative integers N , there is an identity of analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} \frac{s(m+N, k|r)}{(m+N)!} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ &= (-1)^k \binom{s+k-1}{k} \zeta_N(s+k, a-r) - \sum_{m=k}^{N-1} (-1)^m \frac{s(m, k|r)}{m!} \zeta_{N-m}(s, a) \end{aligned}$$

for all $s \in \mathbb{C}$, provided that $a > 0$ and $a - r > 0$.

- In this formula $s(m, k|r)$ is the *weighted Stirling number of the first kind*, defined by

$$(1+t)^{-r} (\log(1+t))^k = k! \sum_{m=k}^{\infty} s(m, k|r) \frac{t^m}{m!} \quad \text{or} \quad (x)_m = \sum_{k=0}^m s(m, k|r) (x+r)^k.$$

- Again the zeta functions $\zeta_N(s, a)$ have simple poles at $s = 1, \dots, N$, but the residues on the right hand side sum to zero, to give an entire function. The formula also makes good sense p -adically, when $s, x \in \mathbb{Z}_p$ and $|a|_p > 1$.

Hyperharmonic special cases

Taking $k = 1$ in this theorem gives the following corollary: For all nonnegative integers r and N we have

$$\sum_{m=0}^{\infty} H_{m+N}^{[r]} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} = s \zeta_N(s+1, a-r) - \sum_{m=1}^{N-1} H_m^{[r]} \zeta_{N-m}(s, a)$$

for all $s \in \mathbb{C}$ and $a > r$.

Hyperharmonic special cases

Taking $k = 1$ in this theorem gives the following corollary: For all nonnegative integers r and N we have

$$\sum_{m=0}^{\infty} H_{m+N}^{[r]} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} = s \zeta_N(s+1, a-r) - \sum_{m=1}^{N-1} H_m^{[r]} \zeta_{N-m}(s, a)$$

for all $s \in \mathbb{C}$ and $a > r$.

- Here $H_m^{[r]}$ denotes the *hyperharmonic number* of order r , defined by $H_m^{[0]} = \frac{1}{m}$ for $m > 0$, $H_0^{[r]} = 0$, and

$$H_m^{[r]} = \sum_{i=1}^m H_i^{[r-1]} \quad \text{for } m > 0.$$

So $H_m^{[1]} = H_m$ is the usual harmonic number.

Hyperharmonic special cases

Taking $k = 1$ in this theorem gives the following corollary: For all nonnegative integers r and N we have

$$\sum_{m=0}^{\infty} H_{m+N}^{[r]} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} = s \zeta_N(s+1, a-r) - \sum_{m=1}^{N-1} H_m^{[r]} \zeta_{N-m}(s, a)$$

for all $s \in \mathbb{C}$ and $a > r$.

- Here $H_m^{[r]}$ denotes the *hyperharmonic number* of order r , defined by $H_m^{[0]} = \frac{1}{m}$ for $m > 0$, $H_0^{[r]} = 0$, and

$$H_m^{[r]} = \sum_{i=1}^m H_i^{[r-1]} \quad \text{for } m > 0.$$

So $H_m^{[1]} = H_m$ is the usual harmonic number.

- In particular, taking $N = 1$ then gives

$$\sum_{m=0}^{\infty} H_{m+1}^{[r]} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} = s \zeta(s+1, a-r).$$

Hyperharmonic special cases

Taking $k = 1$ in this theorem gives the following corollary: For all nonnegative integers r and N we have

$$\sum_{m=0}^{\infty} H_{m+N}^{[r]} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} = s \zeta_N(s+1, a-r) - \sum_{m=1}^{N-1} H_m^{[r]} \zeta_{N-m}(s, a)$$

for all $s \in \mathbb{C}$ and $a > r$.

- Here $H_m^{[r]}$ denotes the *hyperharmonic number* of order r , defined by $H_m^{[0]} = \frac{1}{m}$ for $m > 0$, $H_0^{[r]} = 0$, and

$$H_m^{[r]} = \sum_{i=1}^m H_i^{[r-1]} \quad \text{for } m > 0.$$

So $H_m^{[1]} = H_m$ is the usual harmonic number.

- In particular, taking $N = 1$ then gives

$$\sum_{m=0}^{\infty} H_{m+1}^{[r]} \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} = s \zeta(s+1, a-r).$$

- The $r = 0$ case of this formula was the original (1930) formula of Hasse, and the $r = 1$ case was recently given by Blagouchine.

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

Define $|x|_p = p^{-\nu_p(x)}$, the p -adic absolute value, for $x \in \mathbb{Q}$.

“High powers of p are small”

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

Define $|x|_p = p^{-\nu_p(x)}$, the p -adic absolute value, for $x \in \mathbb{Q}$.

“High powers of p are small”

Field $\mathbb{Q}_p =$ completion of \mathbb{Q} with respect to $|\cdot|_p$

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

Define $|x|_p = p^{-\nu_p(x)}$, the p -adic absolute value, for $x \in \mathbb{Q}$.

“High powers of p are small”

Field $\mathbb{Q}_p =$ completion of \mathbb{Q} with respect to $|\cdot|_p$

Ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\} = \{x \in \mathbb{Q}_p : \nu_p(x) \geq 0\}$

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

Define $|x|_p = p^{-\nu_p(x)}$, the p -adic absolute value, for $x \in \mathbb{Q}$.

“High powers of p are small”

Field $\mathbb{Q}_p =$ completion of \mathbb{Q} with respect to $|\cdot|_p$

Ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\} = \{x \in \mathbb{Q}_p : \nu_p(x) \geq 0\}$

Field $\mathbb{C}_p =$ completion of an algebraic closure $\bar{\mathbb{Q}}_p$ of \mathbb{Q}_p . Note $\mathbb{C}_p \cong \mathbb{C}$, but $\mathbb{C}_p \not\cong \mathbb{C}$.

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

Define $|x|_p = p^{-\nu_p(x)}$, the p -adic absolute value, for $x \in \mathbb{Q}$.

“High powers of p are small”

Field $\mathbb{Q}_p =$ completion of \mathbb{Q} with respect to $|\cdot|_p$

Ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\} = \{x \in \mathbb{Q}_p : \nu_p(x) \geq 0\}$

Field $\mathbb{C}_p =$ completion of an algebraic closure $\bar{\mathbb{Q}}_p$ of \mathbb{Q}_p . Note $\mathbb{C}_p \cong \mathbb{C}$, but $\mathbb{C}_p \not\cong \mathbb{C}$.

Let $\langle \cdot \rangle$ denote the projection onto the third factor in the internal direct product decomposition $\mathbb{C}_p^\times \cong p^\mathbb{Q} \times \mu \times B(1, 1^-)$ where μ denotes the group of roots of unity of order not divisible by p .

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

Define $|x|_p = p^{-\nu_p(x)}$, the p -adic absolute value, for $x \in \mathbb{Q}$.

“High powers of p are small”

Field \mathbb{Q}_p = completion of \mathbb{Q} with respect to $|\cdot|_p$

Ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\} = \{x \in \mathbb{Q}_p : \nu_p(x) \geq 0\}$

Field \mathbb{C}_p = completion of an algebraic closure $\bar{\mathbb{Q}}_p$ of \mathbb{Q}_p . Note $\mathbb{C}_p \cong \mathbb{C}$, but $\mathbb{C}_p \not\cong \mathbb{C}$.

Let $\langle \cdot \rangle$ denote the projection onto the third factor in the internal direct product decomposition $\mathbb{C}_p^\times \cong p^\mathbb{Q} \times \mu \times B(1, 1^-)$ where μ denotes the group of roots of unity of order not divisible by p .

We can then define $\langle a \rangle^s = \sum_{n=0}^{\infty} \binom{s}{n} (\langle a \rangle - 1)^n$ for $a \in \mathbb{C}_p^\times$ and $s \in \mathbb{Z}_p$. This is (at least) a C^∞ function of $s \in \mathbb{Z}_p$, and locally analytic as a function of $a \in \mathbb{C}_p^\times$.

For a prime number p , and $x \in \mathbb{Q}^\times$, write $x = p^k(r/s)$ with $(p, r) = (p, s) = (r, s) = 1$ and $k \in \mathbb{Z}$; the integer k is the p -adic valuation of x , denoted $k = \nu_p(x)$; set $\nu_p(0) = +\infty$.

Define $|x|_p = p^{-\nu_p(x)}$, the p -adic absolute value, for $x \in \mathbb{Q}$.

“High powers of p are small”

Field $\mathbb{Q}_p =$ completion of \mathbb{Q} with respect to $|\cdot|_p$

Ring $\mathbb{Z}_p = \{x \in \mathbb{Q}_p : |x|_p \leq 1\} = \{x \in \mathbb{Q}_p : \nu_p(x) \geq 0\}$

Field $\mathbb{C}_p =$ completion of an algebraic closure $\bar{\mathbb{Q}}_p$ of \mathbb{Q}_p . Note $\mathbb{C}_p \cong \mathbb{C}$, but $\mathbb{C}_p \not\cong \mathbb{C}$.

Let $\langle \cdot \rangle$ denote the projection onto the third factor in the internal direct product decomposition $\mathbb{C}_p^\times \cong p^\mathbb{Q} \times \mu \times B(1, 1^-)$ where μ denotes the group of roots of unity of order not divisible by p .

We can then define $\langle a \rangle^s = \sum_{n=0}^{\infty} \binom{s}{n} (\langle a \rangle - 1)^n$ for $a \in \mathbb{C}_p^\times$ and $s \in \mathbb{Z}_p$. This is (at least) a C^∞ function of $s \in \mathbb{Z}_p$, and locally analytic as a function of $a \in \mathbb{C}_p^\times$.

The Iwasawa logarithm \log_p is defined on \mathbb{C}_p^\times by $\log_p a = -\sum_{n=1}^{\infty} (1 - \langle a \rangle)^n / n$.

The factor $\langle a \rangle/a$, which appears in some of our p -adic formulas, is locally constant and algebraic with p -adic logarithm zero.

p -adic Hurwitz multiple zeta functions

For positive integer orders r , the complex and p -adic multiple zeta functions of order r defined by

$$\zeta_r(s, a) = \sum_{\bar{t} \in \mathbb{Z}_0^r} (a + |\bar{t}|)^{-s}, \quad \zeta_{p,r}(s, a) = \frac{1}{(s-1)\cdots(s-r)} \int_{\mathbb{Z}_p^r} \frac{(a + |\bar{t}|)^r}{\langle a + |\bar{t}| \rangle^s} d\bar{t},$$

where $|\bar{t}| = t_1 + \cdots + t_r$ denotes the “length” of the vector $\bar{t} = (t_1, \dots, t_r)$. The p -adic function $\zeta_{p,r}(s, a)$ is (at least) a C^∞ of $s \in \mathbb{Z}_p \setminus \{1, \dots, r\}$ when $|a|_p > 1$.

p -adic Hurwitz multiple zeta functions

For positive integer orders r , the complex and p -adic multiple zeta functions of order r defined by

$$\zeta_r(s, a) = \sum_{\bar{t} \in \mathbb{Z}_0^r} (a + |\bar{t}|)^{-s}, \quad \zeta_{p,r}(s, a) = \frac{1}{(s-1)\cdots(s-r)} \int_{\mathbb{Z}_p^r} \frac{(a + |\bar{t}|)^r}{\langle a + |\bar{t}| \rangle^s} d\bar{t},$$

where $|\bar{t}| = t_1 + \cdots + t_r$ denotes the “length” of the vector $\bar{t} = (t_1, \dots, t_r)$. The p -adic function $\zeta_{p,r}(s, a)$ is (at least) a C^∞ of $s \in \mathbb{Z}_p \setminus \{1, \dots, r\}$ when $|a|_p > 1$.

- When $r = 0$ these are just the functions $\zeta_0(s, a) = a^{-s}$ and $\zeta_{p,0}(s, a) = \langle a \rangle^{-s}$.

p -adic Hurwitz multiple zeta functions

For positive integer orders r , the complex and p -adic multiple zeta functions of order r defined by

$$\zeta_r(s, a) = \sum_{\bar{t} \in \mathbb{Z}_0^r} (a + |\bar{t}|)^{-s}, \quad \zeta_{p,r}(s, a) = \frac{1}{(s-1)\cdots(s-r)} \int_{\mathbb{Z}_p^r} \frac{(a + |\bar{t}|)^r}{\langle a + |\bar{t}| \rangle^s} d\bar{t},$$

where $|\bar{t}| = t_1 + \cdots + t_r$ denotes the “length” of the vector $\bar{t} = (t_1, \dots, t_r)$. The p -adic function $\zeta_{p,r}(s, a)$ is (at least) a C^∞ of $s \in \mathbb{Z}_p \setminus \{1, \dots, r\}$ when $|a|_p > 1$.

- When $r = 0$ these are just the functions $\zeta_0(s, a) = a^{-s}$ and $\zeta_{p,0}(s, a) = \langle a \rangle^{-s}$.
- For negative integer orders, we have

$$\zeta_{p,-r}(s, a) = \sum_{j=0}^r \binom{r}{j} (-1)^j \langle a + j \rangle^{-s},$$

so that $(-1)^r \zeta_{p,-r}(s, a)$ is the r -th forward difference of the power function $\langle a \rangle^{-s}$ with respect to the a parameter.

p -adic Hurwitz multiple zeta functions

For positive integer orders r , the complex and p -adic multiple zeta functions of order r defined by

$$\zeta_r(s, a) = \sum_{\bar{t} \in \mathbb{Z}_0^r} (a + |\bar{t}|)^{-s}, \quad \zeta_{p,r}(s, a) = \frac{1}{(s-1)\cdots(s-r)} \int_{\mathbb{Z}_p^r} \frac{(a + |\bar{t}|)^r}{\langle a + |\bar{t}| \rangle^s} d\bar{t},$$

where $|\bar{t}| = t_1 + \cdots + t_r$ denotes the “length” of the vector $\bar{t} = (t_1, \dots, t_r)$. The p -adic function $\zeta_{p,r}(s, a)$ is (at least) a C^∞ of $s \in \mathbb{Z}_p \setminus \{1, \dots, r\}$ when $|a|_p > 1$.

- When $r = 0$ these are just the functions $\zeta_0(s, a) = a^{-s}$ and $\zeta_{p,0}(s, a) = \langle a \rangle^{-s}$.
- For negative integer orders, we have

$$\zeta_{p,-r}(s, a) = \sum_{j=0}^r \binom{r}{j} (-1)^j \langle a + j \rangle^{-s},$$

so that $(-1)^r \zeta_{p,-r}(s, a)$ is the r -th forward difference of the power function $\langle a \rangle^{-s}$ with respect to the a parameter.

- For any integer r , positive or negative, the a -derivative of $\zeta_{p,r}(s, a)$ is an s -shift

$$\frac{\partial}{\partial a} \zeta_{p,r}(s, a) = -s \frac{\langle a \rangle}{a} \zeta_{p,r}(s+1, a).$$

p -adic versions of the series

For all nonnegative integers N and k , there is an identity of p -adic analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} b_{m+N}^{(k)}(x) \sum_{j=0}^m (-1)^j \binom{m}{j} (j+a)^{-s} \\ &= \left(\frac{a}{\langle a \rangle} \right)^k \frac{\zeta_{p,N-k}(s-k, a+x)}{(s-1)_k} - \sum_{m=0}^{N-1} (-1)^m b_m^{(k)}(x) \zeta_{p,N-m}(s, a) \end{aligned}$$

for $s, x \in \mathbb{Z}_p$, provided that $|a|_p > 1$.

p -adic versions of the series

For all nonnegative integers N and k , there is an identity of p -adic analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} b_{m+N}^{(k)}(x) \sum_{j=0}^m (-1)^j \binom{m}{j} \langle j+a \rangle^{-s} \\ &= \left(\frac{a}{\langle a \rangle} \right)^k \frac{\zeta_{p,N-k}(s-k, a+x)}{(s-1)_k} - \sum_{m=0}^{N-1} (-1)^m b_m^{(k)}(x) \zeta_{p,N-m}(s, a) \end{aligned}$$

for $s, x \in \mathbb{Z}_p$, provided that $|a|_p > 1$.

- For all positive integers k and nonnegative integers N , there is an identity of p -adic analytic functions

$$\begin{aligned} & \sum_{m=0}^{\infty} (-1)^{m+N} \frac{s(m+N, k|r)}{(m+N)!} \sum_{j=0}^m (-1)^j \binom{m}{j} \langle j+a \rangle^{-s} \\ &= \left(\frac{\langle a \rangle}{a} \right)^k (-1)^k \binom{s+k-1}{k} \zeta_{p,N}(s+k, a-r) - \sum_{m=k}^{N-1} (-1)^m \frac{s(m, k|r)}{m!} \zeta_{p,N-m}(s, a) \end{aligned}$$

for $s, r \in \mathbb{Z}_p$, provided that $|a|_p > 1$.

Taking $N = 1$, $k = 1$, $n = 0$ yields

$$\sum_{m=0}^{\infty} \frac{(-1)^m m! b_{m+1}(x)}{a(a+1) \cdots (a+m)} = \begin{cases} \log(a+x) - \psi(a) & \text{in } \mathbb{R}, \\ \log_p(a+x) - \psi_p(a) & \text{in } \mathbb{C}_p, \end{cases} \begin{array}{l} \text{if } a > 0 \text{ and } a+x > 0, \\ \text{if } |a|_p > 1 \text{ and } x \in \mathbb{Z}_p. \end{array}$$

Taking $N = 1, k = 1, n = 0$ yields

$$\sum_{m=0}^{\infty} \frac{(-1)^m m! b_{m+1}(x)}{a(a+1) \cdots (a+m)} = \begin{cases} \log(a+x) - \psi(a) \text{ in } \mathbb{R}, & \text{if } a > 0 \text{ and } a+x > 0, \\ \log_p(a+x) - \psi_p(a) \text{ in } \mathbb{C}_p, & \text{if } |a|_p > 1 \text{ and } x \in \mathbb{Z}_p. \end{cases}$$

- Taking $N = 1, k = 1, n = 1, a = 1/2$ gives

$$\sum_{m=0}^{\infty} \frac{(-1)^m 4^{m+1} b_{m+1}(x) O_{m+1}}{(2m+1) \binom{2m}{m}} = \begin{cases} \frac{2}{1+2x} - 3\zeta(2) \text{ in } \mathbb{R}, & \text{if } x > -1/2, \\ \frac{2}{1+2x} - 4\zeta_{2,1}(2, \frac{1}{2}) \text{ in } \mathbb{C}_2, & \text{if } x \in \mathbb{Z}_2, \end{cases}$$

where $O_m := \sum_{j=1}^m \frac{1}{2j-1}$ is the m -th “odd harmonic” number.

Taking $N = 1$, $k = 1$, $n = 0$ yields

$$\sum_{m=0}^{\infty} \frac{(-1)^m m! b_{m+1}(x)}{a(a+1) \cdots (a+m)} = \begin{cases} \log(a+x) - \psi(a) & \text{in } \mathbb{R}, \\ \log_p(a+x) - \psi_p(a) & \text{in } \mathbb{C}_p, \end{cases} \quad \begin{array}{l} \text{if } a > 0 \text{ and } a+x > 0, \\ \text{if } |a|_p > 1 \text{ and } x \in \mathbb{Z}_p. \end{array}$$

- Taking $N = 1$, $k = 1$, $n = 1$, $a = 1/2$ gives

$$\sum_{m=0}^{\infty} \frac{(-1)^m 4^{m+1} b_{m+1}(x) O_{m+1}}{(2m+1) \binom{2m}{m}} = \begin{cases} \frac{2}{1+2x} - 3\zeta(2) & \text{in } \mathbb{R}, \\ \frac{2}{1+2x} & \text{in } \mathbb{C}_2, \end{cases} \quad \begin{array}{l} \text{if } x > -1/2, \\ \text{if } x \in \mathbb{Z}_2, \end{array}$$

where $O_m := \sum_{j=1}^m \frac{1}{2j-1}$ is the m -th “odd harmonic” number.

Taking $N = 1, k = 1, n = 0$ yields

$$\sum_{m=0}^{\infty} \frac{(-1)^m m! b_{m+1}(x)}{a(a+1) \cdots (a+m)} = \begin{cases} \log(a+x) - \psi(a) & \text{in } \mathbb{R}, \\ \log_p(a+x) - \psi_p(a) & \text{in } \mathbb{C}_p, \end{cases} \quad \begin{array}{l} \text{if } a > 0 \text{ and } a+x > 0, \\ \text{if } |a|_p > 1 \text{ and } x \in \mathbb{Z}_p. \end{array}$$

- Taking $N = 1, k = 1, n = 1, a = 1/2$ gives

$$\sum_{m=0}^{\infty} \frac{(-1)^m 4^{m+1} b_{m+1}(x) O_{m+1}}{(2m+1) \binom{2m}{m}} = \begin{cases} \frac{2}{1+2x} - 3\zeta(2) & \text{in } \mathbb{R}, \\ \frac{2}{1+2x} & \text{in } \mathbb{C}_2, \end{cases} \quad \begin{array}{l} \text{if } x > -1/2, \\ \text{if } x \in \mathbb{Z}_2, \end{array}$$

where $O_m := \sum_{j=1}^m \frac{1}{2j-1}$ is the m -th “odd harmonic” number.

- Taking $N = 1, k = 1, n = 0, x = -1, a = 3/2$ gives

$$\sum_{m=0}^{\infty} \frac{(-1)^m 4^{m+1} B_{m+1}^{(m+1)}}{(m+1)(2m+3)(m+1)! \binom{2m+2}{m+1}} = \begin{cases} -\log 2 - \psi(3/2) & \text{in } \mathbb{R}, \\ -\log_2 2 - \psi_2(3/2) & \text{in } \mathbb{Q}_2. \end{cases}$$

Taking $N = 1, k = 1, n = 0$ yields

$$\sum_{m=0}^{\infty} \frac{(-1)^m m! b_{m+1}(x)}{a(a+1) \cdots (a+m)} = \begin{cases} \log(a+x) - \psi(a) & \text{in } \mathbb{R}, \\ \log_p(a+x) - \psi_p(a) & \text{in } \mathbb{C}_p, \end{cases} \quad \begin{array}{l} \text{if } a > 0 \text{ and } a+x > 0, \\ \text{if } |a|_p > 1 \text{ and } x \in \mathbb{Z}_p. \end{array}$$

- Taking $N = 1, k = 1, n = 1, a = 1/2$ gives

$$\sum_{m=0}^{\infty} \frac{(-1)^m 4^{m+1} b_{m+1}(x) O_{m+1}}{(2m+1) \binom{2m}{m}} = \begin{cases} \frac{2}{1+2x} - 3\zeta(2) & \text{in } \mathbb{R}, \\ \frac{2}{1+2x} & \text{in } \mathbb{C}_2, \end{cases} \quad \begin{array}{l} \text{if } x > -1/2, \\ \text{if } x \in \mathbb{Z}_2, \end{array}$$

where $O_m := \sum_{j=1}^m \frac{1}{2j-1}$ is the m -th “odd harmonic” number.

- Taking $N = 1, k = 1, n = 0, x = -1, a = 3/2$ gives

$$\sum_{m=0}^{\infty} \frac{(-1)^m 4^{m+1} B_{m+1}^{(m+1)}}{(m+1)(2m+3)(m+1)! \binom{2m+2}{m+1}} = \begin{cases} -\log 2 - \psi(3/2) & \text{in } \mathbb{R}, \\ -\psi_2(3/2) & \text{in } \mathbb{Q}_2. \end{cases}$$

Taking $N = 1$, $k = 1$, $n = 0$, $a = r + \frac{1}{2}$ yields

$$\sum_{m=0}^{\infty} \frac{4^{m+1} \binom{2r}{r} H_{m+1}^{[r]}}{(2r+2m+1) \binom{2m+2r}{m+r} \binom{m+r}{r}} = \begin{cases} 6\zeta(2) = \pi^2 & \text{in } \mathbb{R}, \\ 8\zeta_{2,1}(2, \frac{1}{2}) = 0 & \text{in } \mathbb{Q}_2. \end{cases}$$

Taking $N = 1, k = 1, n = 0, a = r + \frac{1}{2}$ yields

$$\sum_{m=0}^{\infty} \frac{4^{m+1} \binom{2r}{r} H_{m+1}^{[r]}}{(2r+2m+1) \binom{2m+2r}{m+r} \binom{m+r}{r}} = \begin{cases} 6\zeta(2) = \pi^2 & \text{in } \mathbb{R}, \\ 8\zeta_{2,1}(2, \frac{1}{2}) = 0 & \text{in } \mathbb{Q}_2. \end{cases}$$

• Taking $N = 1, k = 1, n = 1, a = r + \frac{1}{2}$ yields

$$\sum_{m=0}^{\infty} \frac{4^{m+1} \binom{2r}{r} H_{m+1}^{[r]} (O_{r+m+1} - O_r)}{(2r+2m+1) \binom{2m+2r}{m+r} \binom{m+r}{r}} = \begin{cases} 7\zeta(3) & \text{in } \mathbb{R}, \\ 16\zeta_{2,1}(3, \frac{1}{2}) & \text{in } \mathbb{Q}_2. \end{cases}$$

where $O_m := \sum_{j=1}^m \frac{1}{2j-1}$ is the m -th “odd harmonic” number.

The field with one element is \mathbb{F}_{un}

The field with one element is \mathbb{F}_{un}

- Disclaimer: There is no such thing as a field with one element. We use \mathbb{F}_q to denote the unique field with q elements; such a field exists if and only if q is a power of some prime p .

The field with one element is \mathbb{F}_{un}

- Disclaimer: There is no such thing as a field with one element. We use \mathbb{F}_q to denote the unique field with q elements; such a field exists if and only if q is a power of some prime p .
- In a 1957 paper, Jacques Tits began dreaming of a geometry over a hypothetical field with one element. The idea was to explain certain phenomena in algebraic combinatorics, combinatorial geometries, and homotopy theory that were not well explained by the theory of schemes.

The field with one element is \mathbb{F}_{un}

- Disclaimer: There is no such thing as a field with one element. We use \mathbb{F}_q to denote the unique field with q elements; such a field exists if and only if q is a power of some prime p .
- In a 1957 paper, Jacques Tits began dreaming of a geometry over a hypothetical field with one element. The idea was to explain certain phenomena in algebraic combinatorics, combinatorial geometries, and homotopy theory that were not well explained by the theory of schemes.
- In the 1990s, Manin began considering that the Riemann hypothesis could possibly be proved if one could construe the integers \mathbb{Z} as an algebra over \mathbb{F}_1 . We know we can prove the analogous Riemann hypothesis for zeta functions of function fields in positive characteristic. The dream is that if you could view the integers as a curve over a field with one element, then you could mimic Weil's proof and win yourself a million dollars.

The field with one element is \mathbb{F}_{un}

- Disclaimer: There is no such thing as a field with one element. We use \mathbb{F}_q to denote the unique field with q elements; such a field exists if and only if q is a power of some prime p .
- In a 1957 paper, Jacques Tits began dreaming of a geometry over a hypothetical field with one element. The idea was to explain certain phenomena in algebraic combinatorics, combinatorial geometries, and homotopy theory that were not well explained by the theory of schemes.
- In the 1990s, Manin began considering that the Riemann hypothesis could possibly be proved if one could construe the integers \mathbb{Z} as an algebra over \mathbb{F}_1 . We know we can prove the analogous Riemann hypothesis for zeta functions of function fields in positive characteristic. The dream is that if you could view the integers as a curve over a field with one element, then you could mimic Weil's proof and win yourself a million dollars.
- Cristophe Soulé (2004) first proposed a construction of varieties over \mathbb{F}_1 . Connes and Consani (2010) described schemes over \mathbb{F}_1 , and also zeta functions over \mathbb{F}_1 for varieties satisfying a weakened version of *Soulé's condition*. In their heuristic, one has the zeta function for the integers as a curve of infinite genus over \mathbb{F}_1 , whose "counting function" is a distribution, and the corresponding zeta function as a Mellin transform of this distribution.

The field with one element is \mathbb{F}_{un}

- Disclaimer: There is no such thing as a field with one element. We use \mathbb{F}_q to denote the unique field with q elements; such a field exists if and only if q is a power of some prime p .
- In a 1957 paper, Jacques Tits began dreaming of a geometry over a hypothetical field with one element. The idea was to explain certain phenomena in algebraic combinatorics, combinatorial geometries, and homotopy theory that were not well explained by the theory of schemes.
- In the 1990s, Manin began considering that the Riemann hypothesis could possibly be proved if one could construe the integers \mathbb{Z} as an algebra over \mathbb{F}_1 . We know we can prove the analogous Riemann hypothesis for zeta functions of function fields in positive characteristic. The dream is that if you could view the integers as a curve over a field with one element, then you could mimic Weil's proof and win yourself a million dollars.
- Cristophe Soulé (2004) first proposed a construction of varieties over \mathbb{F}_1 . Connes and Consani (2010) described schemes over \mathbb{F}_1 , and also zeta functions over \mathbb{F}_1 for varieties satisfying a weakened version of *Soulé's condition*. In their heuristic, one has the zeta function for the integers as a curve of infinite genus over \mathbb{F}_1 , whose "counting function" is a distribution, and the corresponding zeta function as a Mellin transform of this distribution.
- Kurokawa, Tanaka, and others realized that you needed a regularization of the Connes-Consani zeta function to accommodate varieties with counting functions which don't vanish at $q = 1$.

Absolute zeta functions

Let $N(x)$ be a suitable “counting function” defined on $(0, \infty)$ satisfying an automorphic relation of the form

$$N\left(\frac{1}{x}\right) = Cx^{-D}N(x)$$

where D is an integer and $C = \pm 1$.

Absolute zeta functions

Let $N(x)$ be a suitable “counting function” defined on $(0, \infty)$ satisfying an automorphic relation of the form

$$N\left(\frac{1}{x}\right) = Cx^{-D}N(x)$$

where D is an integer and $C = \pm 1$.

- A prototypical example occurs when X is a scheme over \mathbb{Z} which admits a polynomial N such that $N(q) = |X/\mathbb{F}_q|$ for all prime powers q .

Absolute zeta functions

Let $N(x)$ be a suitable “counting function” defined on $(0, \infty)$ satisfying an automorphic relation of the form

$$N\left(\frac{1}{x}\right) = Cx^{-D}N(x)$$

where D is an integer and $C = \pm 1$.

- A prototypical example occurs when X is a scheme over \mathbb{Z} which admits a polynomial N such that $N(q) = |X/\mathbb{F}_q|$ for all prime powers q .
- We define the *absolute Hurwitz zeta function* associated to N (or to X/\mathbb{F}_1) by

$$Z_N(w, s) = \frac{1}{\Gamma(w)} \int_0^\infty N(e^t) e^{-st} t^{w-1} dt$$

and the *absolute Hasse zeta function* associated to N (or to X/\mathbb{F}_1) by

$$\zeta_N(s) = \exp\left(\frac{\partial}{\partial w} Z_N(w, s)\Big|_{w=0}\right).$$

Absolute zeta functions

Let $N(x)$ be a suitable “counting function” defined on $(0, \infty)$ satisfying an automorphic relation of the form

$$N\left(\frac{1}{x}\right) = Cx^{-D}N(x)$$

where D is an integer and $C = \pm 1$.

- A prototypical example occurs when X is a scheme over \mathbb{Z} which admits a polynomial N such that $N(q) = |X/\mathbb{F}_q|$ for all prime powers q .
- We define the *absolute Hurwitz zeta function* associated to N (or to X/\mathbb{F}_1) by

$$Z_N(w, s) = \frac{1}{\Gamma(w)} \int_0^\infty N(e^t) e^{-st} t^{w-1} dt$$

and the *absolute Hasse zeta function* associated to N (or to X/\mathbb{F}_1) by

$$\zeta_N(s) = \exp\left(\frac{\partial}{\partial w} Z_N(w, s)\Big|_{w=0}\right).$$

- In the case of schemes X over \mathbb{Z} satisfying Soulé’s condition, this absolute zeta function $\zeta_{X/\mathbb{F}_1}(s)$ coincides with the “limit” as $p \rightarrow 1$ of its congruence zeta functions in characteristic p , normalized by $(p-1)^{N(1)}$.

Absolute zeta functions

Let $N(x)$ be a suitable “counting function” defined on $(0, \infty)$ satisfying an automorphic relation of the form

$$N\left(\frac{1}{x}\right) = Cx^{-D}N(x)$$

where D is an integer and $C = \pm 1$.

- A prototypical example occurs when X is a scheme over \mathbb{Z} which admits a polynomial N such that $N(q) = |X/\mathbb{F}_q|$ for all prime powers q .
- We define the *absolute Hurwitz zeta function* associated to N (or to X/\mathbb{F}_1) by

$$Z_N(w, s) = \frac{1}{\Gamma(w)} \int_0^\infty N(e^t) e^{-st} t^{w-1} dt$$

and the *absolute Hasse zeta function* associated to N (or to X/\mathbb{F}_1) by

$$\zeta_N(s) = \exp\left(\frac{\partial}{\partial w} Z_N(w, s)\Big|_{w=0}\right).$$

- In the case of schemes X over \mathbb{Z} satisfying Soulé’s condition, this absolute zeta function $\zeta_{X/\mathbb{F}_1}(s)$ coincides with the “limit” as $p \rightarrow 1$ of its congruence zeta functions in characteristic p , normalized by $(p-1)^{N(1)}$.
- The connection to my work on zeta expansions stems from the relation of $\zeta_{\mathbb{G}_m^n/\mathbb{F}_1}$ to the negative-order zeta functions $\zeta_{-n}(s, a)$.

Absolute limit formulas for Hurwitz zeta functions

Denote by $\gamma_k(a)$ the constant term in the Laurent expansion of the order k zeta function $\zeta_k(s, a)$ at its rightmost pole, that is,

$$\gamma_k(a) = \lim_{s \rightarrow k} \left(\zeta_k(s, a) - \frac{1}{(k-1)!(s-k)} \right).$$

Absolute limit formulas for Hurwitz zeta functions

Denote by $\gamma_k(a)$ the constant term in the Laurent expansion of the order k zeta function $\zeta_k(s, a)$ at its rightmost pole, that is,

$$\gamma_k(a) = \lim_{s \rightarrow k} \left(\zeta_k(s, a) - \frac{1}{(k-1)!(s-k)} \right).$$

- **Theorem.** If $a > 0$ and $a - r > 0$ then for all positive integers k we have

$$\gamma_k(a-r) + \frac{H_{k-1}}{(k-1)!} = k \sum_{n=0}^{\infty} \frac{(-1)^n s(n+k, k|r)}{(n+k)!} \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+n).$$

In particular, for every nonnegative integer r we have

$$\gamma(a) = \sum_{n=0}^{\infty} H_{n+1}^{[r]} \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+r+n),$$

where $H_n^{[r]}$ denotes the hyperharmonic number of order r .

Absolute limit formulas for Hurwitz zeta functions

Denote by $\gamma_k(a)$ the constant term in the Laurent expansion of the order k zeta function $\zeta_k(s, a)$ at its rightmost pole, that is,

$$\gamma_k(a) = \lim_{s \rightarrow k} \left(\zeta_k(s, a) - \frac{1}{(k-1)!(s-k)} \right).$$

- **Theorem.** If $a > 0$ and $a - r > 0$ then for all positive integers k we have

$$\gamma_k(a-r) + \frac{H_{k-1}}{(k-1)!} = k \sum_{n=0}^{\infty} \frac{(-1)^n s(n+k, k|r)}{(n+k)!} \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+n).$$

In particular, for every nonnegative integer r we have

$$\gamma(a) = \sum_{n=0}^{\infty} H_{n+1}^{[r]} \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+r+n),$$

where $H_n^{[r]}$ denotes the hyperharmonic number of order r .

- The key observation in the proof is

$$\left. \frac{\partial}{\partial s} \zeta_{-n}(s, a) \right|_{s=0} = \left. \frac{\partial}{\partial s} Z_{\mathbb{G}_m^n/\mathbb{F}_1}(s, a+n) \right|_{s=0} = \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+n).$$

Absolute limit formulas for Hurwitz zeta functions

Denote by $\gamma_k(a)$ the constant term in the Laurent expansion of the order k zeta function $\zeta_k(s, a)$ at its rightmost pole, that is,

$$\gamma_k(a) = \lim_{s \rightarrow k} \left(\zeta_k(s, a) - \frac{1}{(k-1)!(s-k)} \right).$$

- **Theorem.** If $a > 0$ and $a - r > 0$ then for all positive integers k we have

$$\gamma_k(a-r) + \frac{H_{k-1}}{(k-1)!} = k \sum_{n=0}^{\infty} \frac{(-1)^n s(n+k, k|r)}{(n+k)!} \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+n).$$

In particular, for every nonnegative integer r we have

$$\gamma(a) = \sum_{n=0}^{\infty} H_{n+1}^{[r]} \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+r+n),$$

where $H_n^{[r]}$ denotes the hyperharmonic number of order r .

- The key observation in the proof is

$$\left. \frac{\partial}{\partial s} \zeta_{-n}(s, a) \right|_{s=0} = \left. \frac{\partial}{\partial s} Z_{\mathbb{G}_m^n/\mathbb{F}_1}(s, a+n) \right|_{s=0} = \log \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+n).$$

- This was observed in the case $r = 0$ by Kurokawa and Tanaka in 2018. In the case $r = 0$, $a = 1$, $k = 1$, it reduces to a 1776 result of Euler.

More absolute limit formulas for Hurwitz zeta functions

More absolute limit formulas for Hurwitz zeta functions

- **Theorem.** If $a > 0$ and $a + x > 0$ then for all positive integers k we have

$$\begin{aligned}\gamma_k(a) + \frac{\log(a+x) + H_{k-1}}{(k-1)!} + \sum_{n=1}^{k-1} (-1)^n b_n^{(k)}(x) \zeta_{k-n}(k, a) \\ = - \sum_{n=0}^{\infty} (-1)^{n+k} b_{n+k}^{(k)}(x) Z_{\mathbb{G}_m^n/\mathbb{F}_1}(k, a+n).\end{aligned}$$

More absolute limit formulas for Hurwitz zeta functions

- **Theorem.** If $a > 0$ and $a + x > 0$ then for all positive integers k we have

$$\begin{aligned}\gamma_k(a) + \frac{\log(a+x) + H_{k-1}}{(k-1)!} + \sum_{n=1}^{k-1} (-1)^n b_n^{(k)}(x) \zeta_{k-n}(k, a) \\ = - \sum_{n=0}^{\infty} (-1)^{n+k} b_{n+k}^{(k)}(x) Z_{\mathbb{G}_m^n/\mathbb{F}_1}(k, a+n).\end{aligned}$$

- These series differ in spirit from those of Kurokawa and Tanaka, as they involve the absolute Hurwitz zeta function for \mathbb{G}_m^n which occurs in the regularization process for the absolute Hasse zeta function.

- **Theorem.** If $a > 0$ and $a + x > 0$ then for all positive integers k we have

$$\begin{aligned}\gamma_k(a) + \frac{\log(a+x) + H_{k-1}}{(k-1)!} + \sum_{n=1}^{k-1} (-1)^n b_n^{(k)}(x) \zeta_{k-n}(k, a) \\ = - \sum_{n=0}^{\infty} (-1)^{n+k} b_{n+k}^{(k)}(x) Z_{\mathbb{G}_m^n/\mathbb{F}_1}(k, a+n).\end{aligned}$$

- These series differ in spirit from those of Kurokawa and Tanaka, as they involve the absolute Hurwitz zeta function for \mathbb{G}_m^n which occurs in the regularization process for the absolute Hasse zeta function.
- **Examples.** Taking $k = 1$, $a = 1$, $x = 0$ gives

$$\gamma = \sum_{n=0}^{\infty} (-1)^n b_{n+1} Z_{\mathbb{G}_m^n/\mathbb{F}_1}(1, n+1).$$

More absolute limit formulas for Hurwitz zeta functions

- **Theorem.** If $a > 0$ and $a + x > 0$ then for all positive integers k we have

$$\begin{aligned}\gamma_k(a) + \frac{\log(a+x) + H_{k-1}}{(k-1)!} + \sum_{n=1}^{k-1} (-1)^n b_n^{(k)}(x) \zeta_{k-n}(k, a) \\ = - \sum_{n=0}^{\infty} (-1)^{n+k} b_{n+k}^{(k)}(x) Z_{\mathbb{G}_m^n/\mathbb{F}_1}(k, a+n).\end{aligned}$$

- These series differ in spirit from those of Kurokawa and Tanaka, as they involve the absolute Hurwitz zeta function for \mathbb{G}_m^n which occurs in the regularization process for the absolute Hasse zeta function.
- **Examples.** Taking $k = 1$, $a = 1$, $x = 0$ gives

$$\gamma = \sum_{n=0}^{\infty} (-1)^n b_{n+1} Z_{\mathbb{G}_m^n/\mathbb{F}_1}(1, n+1).$$

- Taking $k = 2$, $a = 1$, $x = 0$ gives

$$\gamma = \frac{\zeta(2)}{2} - \sum_{n=0}^{\infty} (-1)^n b_{n+2}^{(2)} Z_{\mathbb{G}_m^n/\mathbb{F}_1}(2, n+1).$$

p-adic absolute limit formulas for Hurwitz zeta functions

Denote by $\gamma_{p,k}(a)$ the constant term in the Laurent expansion of the order k *p*-adic zeta function $\zeta_{p,k}(s, a)$ at its rightmost pole, that is,

$$\gamma_{p,k}(a) = \lim_{s \rightarrow k} \left(\zeta_{p,k}(s, a) - \frac{(a/\langle a \rangle)^k}{(k-1)!(s-k)} \right).$$

p-adic absolute limit formulas for Hurwitz zeta functions

Denote by $\gamma_{p,k}(a)$ the constant term in the Laurent expansion of the order k *p*-adic zeta function $\zeta_{p,k}(s, a)$ at its rightmost pole, that is,

$$\gamma_{p,k}(a) = \lim_{s \rightarrow k} \left(\zeta_{p,k}(s, a) - \frac{(a/\langle a \rangle)^k}{(k-1)!(s-k)} \right).$$

- **Theorem.** If $|a|_p > 1$ and $r \in \mathbb{Z}_p$ then for all positive integers k we have

$$\left(\frac{\langle a \rangle}{a} \right)^k \gamma_{p,k}(a-r) + \frac{H_{k-1}}{(k-1)!} = k \sum_{n=0}^{\infty} \frac{(-1)^n s(n+k, k|r)}{(n+k)!} \log_p \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+n).$$

In particular, for every nonnegative integer r we have

$$\frac{\langle a \rangle}{a} \gamma_{p,1}(a) = \sum_{n=0}^{\infty} H_{n+1}^{[r]} \log_p \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+r+n).$$

p-adic absolute limit formulas for Hurwitz zeta functions

Denote by $\gamma_{p,k}(a)$ the constant term in the Laurent expansion of the order k *p*-adic zeta function $\zeta_{p,k}(s, a)$ at its rightmost pole, that is,

$$\gamma_{p,k}(a) = \lim_{s \rightarrow k} \left(\zeta_{p,k}(s, a) - \frac{(a/\langle a \rangle)^k}{(k-1)!(s-k)} \right).$$

- **Theorem.** If $|a|_p > 1$ and $r \in \mathbb{Z}_p$ then for all positive integers k we have

$$\left(\frac{\langle a \rangle}{a} \right)^k \gamma_{p,k}(a-r) + \frac{H_{k-1}}{(k-1)!} = k \sum_{n=0}^{\infty} \frac{(-1)^n s(n+k, k|r)}{(n+k)!} \log_p \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+n).$$

In particular, for every nonnegative integer r we have

$$\frac{\langle a \rangle}{a} \gamma_{p,1}(a) = \sum_{n=0}^{\infty} H_{n+1}^{[r]} \log_p \zeta_{\mathbb{G}_m^n/\mathbb{F}_1}(a+r+n).$$

- Recall that the heuristic of \mathbb{F}_1 is that one constructs a variety over actual finite fields \mathbb{F}_q and then hypocritically takes the “limit” of the counting function, and zeta function, as $q \rightarrow 1$. But in the *p*-adic world there is no hypocrisy because 1 actually is a *p*-adic limit point of the set of prime powers!

A very rough idea in progress

In the two forthcoming papers I have several other series for higher zeta functions and higher Euler constants.

In the two forthcoming papers I have several other series for higher zeta functions and higher Euler constants.

- Kurokawa, Tanaka, and others have a program of analyzing the “regularized Euler constant” of schemes and algebraic groups.

In the two forthcoming papers I have several other series for higher zeta functions and higher Euler constants.

- Kurokawa, Tanaka, and others have a program of analyzing the “regularized Euler constant” of schemes and algebraic groups.
- By my analysis, I expect one can generally express absolute zeta functions of schemes and algebraic groups as convergent series of absolute zeta functions of $\mathbb{G}_m^n/\mathbb{F}_1$. I want to understand the special role of \mathbb{G}_m^n and the algebraic interpretation of these series.

In the two forthcoming papers I have several other series for higher zeta functions and higher Euler constants.

- Kurokawa, Tanaka, and others have a program of analyzing the “regularized Euler constant” of schemes and algebraic groups.
- By my analysis, I expect one can generally express absolute zeta functions of schemes and algebraic groups as convergent series of absolute zeta functions of $\mathbb{G}_m^n/\mathbb{F}_1$. I want to understand the special role of \mathbb{G}_m^n and the algebraic interpretation of these series.
- I suspect that the fact that these series expansions are also valid p -adically is giving additional algebraic information, but I don’t have a precise statement yet.

Thank You!