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Motivation

Richard Guy's Unsolved Problems in Number Theory (1994)

The happy functionis S : Z™ — Z* sending n to the sum of the
squares of its decimal digits.

Example: S(51) =52 +12 =26

A happy number is a number which arrives at 1 after repeated
iterations of the happy function.

Example: S19(51) =4 = 51 is unhappy

4 —16—+37—>58—+89 —145 42 20— 4



Are there sequences of happy numbers of arbitrary length?

2000 El-Sedy and Siksek:
k k

Let n = Za,- -10’. Then S(n) = Za? — YES!
i=0 i=0

2001 Grundman and Teeple: generalized happy numbers
k

Forn_Za, b'. Define Se p(n) = Za

i=0

2007 Grundman and Teeple: for e > 2, and some b

Letn—Za, b’. Then Se b(n Za — YES!
i=0 i=0

2019 Carlson, G, Harris: factoradic base?



More Definitions: Factoradic Happy Things

k
Let n € ZT. Write n:Za,--i! with ax #0and 0 < a; < /.
i=0

Example: 51 =2-4140-3/4+1-24+1-11+0-0!

Define the generalized factoradic happy function as

Set i ZT — ZT by Sei(n) = Za

An e-power factoradic happy number is a number which arrives at
1 after repeated iterations of the generalized factoradic happy
function.

Example: 53,(51) =1 == 51 is happy!



And More Definitions

k
Forn=> a;-il with ay #0and 0 < a; < for 1</ < k.
i=1

We say p € Z™ is an e-power factoradic fixed point if Se1(p) = p.

Example: 551(5) =5

We call n € ZT an e-power factoradic p-happy number if 3¢ > 1
s.t. Sf,!(”) =p.

Example: $3,(2021) =5



e-Power Factoradic Fixed Points

e | M, e-power factoradic fixed points | Cycles

115 1 None

2123 1,4,5 None

3119 1, 16, 17 None

4 | 5039 1, 658, 659 None

5 (40319 |1, 34, 35, 308, 309, 1058, 1059 | (3401,2114)

6 | 362879 | 1, 8258, 8259 (731, 67, 794)




Main Result

Theorem (Carlson, G, Harris, 2019)

For e € {1,2,3,4} and for any e-power factoradic fixed point p of
Se,1, there exists arbitrarily long sequences of e-power factoradic
p-happy numbers.

YES!



Idea of Proof in Cases
Case e = 1 is straightforward.

For cases e € {2,3,4}:

Lemma

Let e € {2,3,4}. If jo € ZT is smallest s.t. jo! > jL, then
Vk > je,

k!> ke tand (k+ 1) — (k4+ 1)t > k! — ko1,

Je
Define M, = Z il
i=1

Theorem

Let e € {2,3,4} and jo € Z* smallest s.t. jo! > j¢ ! If n€ Z*
with n > M,, then n > S, i(n).




Idea of Proof

e | M, e-power factoradic fixed points | Cycles

115 1 None

2123 1,4,5 None

3119 1, 16, 17 None

4 | 5039 1, 658, 659 None

5 (40319 |1, 34, 35, 308, 309, 1058, 1059 | (3401,2114)

6 | 362879 | 1, 8258, 8259 (731, 67, 794)




Future Work

@ What happens with e = 5,6 when there are cycles?
@ What can we say about the density of each factoradic p-happy

number?

‘ e ‘ Proportions of e-power factoradic fixed points of S, in the interval I = [1,10!]
2| Ppy(I) = 22045 — 0612,  Pyu(I) = 240026 = 0.067, Py s(I) = 18828 — 0.321
3| Paa(l) = 3™ = 0943, Pyae(l) = 5% =0.009,  Pyyr(1) = i = 0.048

4| Py (1) = 3556197 — (.98, Pygss(I) = E24 = 0.008, Pyesg(I) = 22828 = 0.012

P5 (1) = 12930 = 0,049, Pyogy(I) = 1242989 — 0426,  Pj 55(I) = 318 = 0.0105,

P50s(1) = 120298 = 0.033, P 309(I) = 220228 = 0.055,

Pj 1058(1) = 888 — 0.0986, Ps1050(1) = 122821 = 0.0385

Values for P, ,(/) for e € {2,3,4,5} and | = [1,10!].

Thank you!



