Tamely Ramified Covers of the Projective Line
and Markoff Triples

Jeremy Booher
joint work with Renee Bell, William Chen, and Yuan Liu

University of Canterbury

December 2019

Jeremy Booher



Covers and the Fundamental Group

Covers of the Plane

Let X = Al = P! — {0}, p a prime.

@ Over C, it's simply connected. m1(Xc) =0

e Over Fp, wft(X?p) # 0. There are Artin-Schreier curves like

yP —y = x9; the map (x,y) — x is a Z/pZ-Galois cover.
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Covers and the Fundamental Group

Several Perspectives

Let X be a smooth projective curve over k = Ep, and B a finite set
of points of X.
By default, all curves and covers are connected.

The following are equivalent:
o Finite index open subgroups of 7$'(X — B);
@ Finite étale covers of X — B;
e Finite branched covers of X ramified only over B,
°

Finite extensions of k(X) ramified only over B.
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Covers and the Fundamental Group

Several Perspectives

Let X be a smooth projective curve over k = Ep, and B a finite set
of points of X.
By default, all curves and covers are connected.

The following are equivalent:
o Finite index open subgroups of 7$'(X — B);
@ Finite étale covers of X — B;
e Finite branched covers of X ramified only over B,
°

Finite extensions of k(X) ramified only over B.

The monodromy group of the cover is the Galois group of the
normal closure of the field extension.
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Covers and the Fundamental Group

What is Known

X curve of genus g, #B =r.

@ Over C, the fundamental group of a Riemann surface of genus
g with r points removed is [, ,, a freeon 2g +r —1
generators. (“Topological Fundamental Group™)

o Let p(G) be the subgroup of G generated by the p-Sylow
subgroups.

Theorem (Harbater, Raynaud)

Over F,,, if r > 0 then G is the Galois group of a finite étale cover
of X — B if and only if G/p(G) is generated by 2g +r — 1
elements.
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Covers and the Fundamental Group

What is Known

X curve of genus g, #B =r.

@ Over C, the fundamental group of a Riemann surface of genus
g with r points removed is [, ,, a freeon 2g +r —1
generators. (“Topological Fundamental Group™)

o Let p(G) be the subgroup of G generated by the p-Sylow
subgroups.

Theorem (Harbater, Raynaud)

Over F,,, if r > 0 then G is the Galois group of a finite étale cover
of X — B if and only if G/p(G) is generated by 2g +r — 1
elements.

o The finite quotients of 7{*(X — B) do not determine this
pro-finite group.
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Covers and the Fundamental Group

Tame Ramification

X curve of genus g, #B = r. ', free with 2g + r — 1 generators

Theorem (Grothedieck)

° ﬂ_f’t( X B)(P’) and Fgf;) are isomorphic.
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Tame Ramification

X curve of genus g, #B = r. ', free with 2g + r — 1 generators

Theorem (Grothedieck)

° ﬂ_f’t( X B)(P’) and Fgf;) are isomorphic.

e The tame fundamental group w§*™¢(X — B) is

a quotient of/F\gﬁr.
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Covers and the Fundamental Group

Tame Ramification

X curve of genus g, #B = r. ', free with 2g + r — 1 generators

Theorem (Grothedieck)

° ﬂ_f’t( X B)(P’) and Fgf;) are isomorphic.

e The tame fundamental group w§*™¢(X — B) is

a quotient of/F\gﬁr.

A potentially manageable question:

What are the tamely ramified covers of X — B?

Jeremy Booher




Covers and the Fundamental Group

Tamely Ramified Covers

Specialize to X = P!, B = {0,1, oc}.

@ There is a G-Galois cover of P! — {0, 1,00} in characteristic
zero if and only if G is generated by two elements.

@ Which of these show up as Galois groups of tame covers in
characteristic p?
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Covers and the Fundamental Group

Tamely Ramified Covers

Specialize to X = P!, B = {0,1, oc}.

@ There is a G-Galois cover of P! — {0, 1,00} in characteristic
zero if and only if G is generated by two elements.

@ Which of these show up as Galois groups of tame covers in
characteristic p?

o Strategy: take a G-Galois cover defined in characteristic zero,
reduce it modulo p.
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Covers and the Fundamental Group

A Criterion for (Potentially) Good Reduction

Let G be a finite group generated by two elements.

Theorem (Raynuad, Obus)

Suppose G has cyclic p-Sylow subgroup. Let Ky = Frac(W(k)),
and K /Ky be a finite extension of degree e(K), where e(K) is less
than the number of conjugacy classes of order p in G. If

7m:Y — P —{0,1,00} is a G-Galois cover defined over K, then
has potentially good reduction.

Jeremy Booher



Covers and the Fundamental Group

A Criterion for (Potentially) Good Reduction

Let G be a finite group generated by two elements.

Theorem (Raynuad, Obus)

Suppose G has cyclic p-Sylow subgroup. Let Ky = Frac(W(k)),
and K /Ky be a finite extension of degree e(K), where e(K) is less
than the number of conjugacy classes of order p in G. If

7m:Y — P —{0,1,00} is a G-Galois cover defined over K, then
has potentially good reduction.

Example

Gives tamely ramified PGL,(F4)-covers in characteristic p for
well-chosen m and q.
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Constructing Three Pointed Covers

New Tamely Ramified Covers

Theorem

Fix a prime p, and let k = Fp. For infinitely many n, there exists a
curve C over k and a branched Galois cover 7w : C — Pi tamely
ramified over three points and unramified elsewhere, whose Galois
group isomorphic to the symmetric group S, (and likewise for the
alternating group Ap).
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Constructing Three Pointed Covers

New Tamely Ramified Covers

Theorem

Fix a prime p, and let k = Fp. For infinitely many n, there exists a
curve C over k and a branched Galois cover 7w : C — Pi tamely
ramified over three points and unramified elsewhere, whose Galois
group isomorphic to the symmetric group S, (and likewise for the
alternating group Ap).

Strategy: construct cover from a map between moduli spaces
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Constructing Three Pointed Covers

Moduli of Elliptic Curves with G-structure

Fix a finite group G generated by two elements; assume for
simplicity that Z(G) = 1.

Definition

Let M(G) be the moduli space of elliptic curves with G-structure:

an elliptic curve E together with a Galois cover of E —{O} with
Galois group G.
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Constructing Three Pointed Covers

Moduli of Elliptic Curves with G-structure

Fix a finite group G generated by two elements; assume for
simplicity that Z(G) = 1.

Definition

Let M(G) be the moduli space of elliptic curves with G-structure:
an elliptic curve E together with a Galois cover of E —{O} with
Galois group G.

o If G is Abelian, a different formulation recovers modular
curves with familiar level structures:
X(N) corresponds to G = (Z/nZ)?.

@ This is naturally defined over Z[ﬁ]
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Constructing Three Pointed Covers

Moduli of Elliptic Curves with G-structure

e Forgetful map p: M(G) — M(1) is finite étale.

e Over C: get branched cover M(G)c — P¢ ramified over 0,
1728, co. It's easy to understand ramification.
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Constructing Three Pointed Covers

Moduli of Elliptic Curves with G-structure

Forgetful map p: M(G) — M(1) is finite étale.

Over C: get branched cover M(G)c — P¢ ramified over 0,
1728, co. It's easy to understand ramification.

Interpretation of fibers over C: Surj(Fz, G)/Inn(G) with
monodromy action of SL»(Z)

Experiments show: if G = PSLy(F;), then there is a natural
large orbit of size n where the monodromy action is S, or A,
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Monodromy and Markhoff Triples

Markoff Triples

Let X be the surface x> + y? + z2 — 3xyz = 0. 3
e X(Z): Markoff triples

o Markoff group I': permute coordinates,
(X,y,Z) = (3yZ—X,y,Z)
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Monodromy and Markhoff Triples

Markoff Triples

Let X be the surface x> + y? + z2 — 3xyz = 0. 3
e X(Z): Markoff triples

o Markoff group I': permute coordinates,
(X,y,Z) = (3yZ—X,y,Z)

(4] X*(Fg) = X(FZ) - {(0’ 0’ O)}

e Experimentally: X*(Fy) is a single I-orbit, action factors
through symmetric or alternating group
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Monodromy and Markhoff Triples

Proving Things

The following are closely linked:
e Monodromy on fibers of M(PSL2(F;))c — P¢;
@ Action of SL2(Z) on Surj(F, PSL2(Fy))/ Inn(PSL2(Fy));
@ Action of I on X*(F,).
Given ¢ : Fp = (a, b) — PSLy(F/) in the “preferred component”,

(tro(a), tro(b), tro(ab)) € X*(Fy)
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Monodromy and Markhoff Triples

Proving Things

The following are closely linked:
e Monodromy on fibers of M(PSL2(F;))c — P¢;
@ Action of SL2(Z) on Surj(F, PSL2(Fy))/ Inn(PSL2(Fy));
@ Action of I on X*(F,).
Given ¢ : Fp = (a, b) — PSLy(F/) in the “preferred component”,

(tro(a), tro(b), tro(ab)) € X*(Fy)

@ Bourgain, Gamburd, and Sarnak show: there is always a large
-orbit on X*(Fy).

@ Can adapt work of Meiri and Puder to see that: for infinitely
many £, I acts as symmetric or alternating group on this orbit.
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Monodromy and Markhoff Triples

Thank you.
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