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Covers of the Plane

Let X = A1 = P1 − {∞}, p a prime.

Over C, it’s simply connected. π1(XC) = 0

Over Fp, πét
1 (XFp

) 6= 0. There are Artin-Schreier curves like

yp − y = xd ; the map (x , y) 7→ x is a Z/pZ-Galois cover.
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Several Perspectives

Let X be a smooth projective curve over k = Fp, and B a finite set
of points of X .
By default, all curves and covers are connected.

The following are equivalent:

Finite index open subgroups of πét
1 (X − B);

Finite étale covers of X − B;

Finite branched covers of X ramified only over B;

Finite extensions of k(X ) ramified only over B.

The monodromy group of the cover is the Galois group of the
normal closure of the field extension.
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What is Known

X curve of genus g , #B = r .

Over C, the fundamental group of a Riemann surface of genus
g with r points removed is Γg ,r , a free on 2g + r − 1
generators. (“Topological Fundamental Group”)

Let p(G ) be the subgroup of G generated by the p-Sylow
subgroups.

Theorem (Harbater, Raynaud)

Over Fp, if r > 0 then G is the Galois group of a finite étale cover
of X − B if and only if G/p(G ) is generated by 2g + r − 1
elements.

The finite quotients of πét
1 (X − B) do not determine this

pro-finite group.
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Tame Ramification

X curve of genus g , #B = r . Γg ,r free with 2g + r − 1 generators

Theorem (Grothedieck)

πét
1 (X − B)(p

′) and Γ̂
(p′)
g ,r are isomorphic.

The tame fundamental group πtame
1 (X − B) is

a quotient of Γ̂g ,r .

A potentially manageable question:

Question

What are the tamely ramified covers of X − B?
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Tamely Ramified Covers

Specialize to X = P1, B = {0, 1,∞}.

There is a G -Galois cover of P1 − {0, 1,∞} in characteristic
zero if and only if G is generated by two elements.

Which of these show up as Galois groups of tame covers in
characteristic p?

Strategy: take a G -Galois cover defined in characteristic zero,
reduce it modulo p.
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A Criterion for (Potentially) Good Reduction

Let G be a finite group generated by two elements.

Theorem (Raynuad, Obus)

Suppose G has cyclic p-Sylow subgroup. Let K0 = Frac(W (k)),
and K/K0 be a finite extension of degree e(K ), where e(K ) is less
than the number of conjugacy classes of order p in G . If
π : Y → P1 −{0, 1,∞} is a G -Galois cover defined over K , then π
has potentially good reduction.

Example

Gives tamely ramified PGLm(Fq)-covers in characteristic p for
well-chosen m and q.
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New Tamely Ramified Covers

Theorem

Fix a prime p, and let k = Fp. For infinitely many n, there exists a
curve C over k and a branched Galois cover π : C → P1

k tamely
ramified over three points and unramified elsewhere, whose Galois
group isomorphic to the symmetric group Sn (and likewise for the
alternating group An).

Strategy: construct cover from a map between moduli spaces
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Moduli of Elliptic Curves with G -structure

Fix a finite group G generated by two elements; assume for
simplicity that Z (G ) = 1.

Definition

Let M(G ) be the moduli space of elliptic curves with G -structure:
an elliptic curve E together with a Galois cover of E − {O} with
Galois group G.

If G is Abelian, a different formulation recovers modular
curves with familiar level structures:
X (N) corresponds to G = (Z/nZ)2.

This is naturally defined over Z[ 1
|G | ].
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Moduli of Elliptic Curves with G -structure

Forgetful map p :M(G )→M(1) is finite étale.

Over C: get branched cover M(G )C → P1
C ramified over 0,

1728, ∞. It’s easy to understand ramification.

Interpretation of fibers over C: Surj(F2,G )/ Inn(G ) with
monodromy action of SL2(Z)

Experiments show: if G = PSL2(F`), then there is a natural
large orbit of size n where the monodromy action is Sn or An
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Markoff Triples

Let X be the surface x2 + y2 + z2 − 3xyz = 0. 3

X (Z): Markoff triples

Markoff group Γ: permute coordinates,
(x , y , z) 7→ (3yz − x , y , z) . . .

X ∗(F`) = X (F`)− {(0, 0, 0)}

Experimentally: X ∗(F`) is a single Γ-orbit, action factors
through symmetric or alternating group
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Proving Things

The following are closely linked:

Monodromy on fibers of M(PSL2(F`))C → P1
C;

Action of SL2(Z) on Surj(F2,PSL2(F`))/ Inn(PSL2(F`));

Action of Γ on X ∗(F`).

Given φ : F2 = 〈a, b〉 → PSL2(F`) in the “preferred component”,

(trφ(a), trφ(b), trφ(ab)) ∈ X ∗(F`)

Bourgain, Gamburd, and Sarnak show: there is always a large
Γ-orbit on X ∗(F`).

Can adapt work of Meiri and Puder to see that: for infinitely
many `, Γ acts as symmetric or alternating group on this orbit.
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Thank you.
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