

Tamely Ramified Covers of the Projective Line and Markoff Triples

Jeremy Booher

joint work with Renee Bell, William Chen, and Yuan Liu

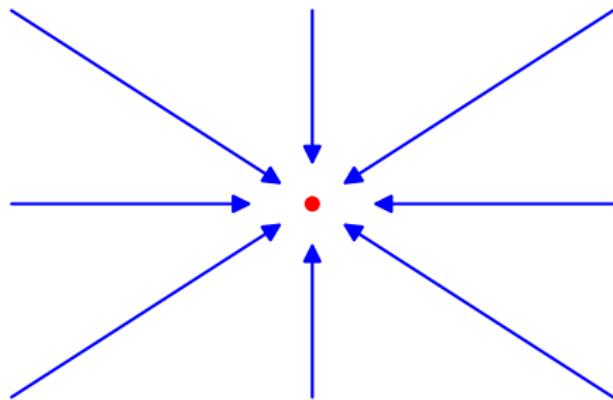
University of Canterbury

December 2019

Covers of the Plane

Let $X = \mathbf{A}^1 = \mathbf{P}^1 - \{\infty\}$, p a prime.

- Over \mathbf{C} , it's simply connected. $\pi_1(X_{\mathbf{C}}) = 0$



- Over $\overline{\mathbf{F}}_p$, $\pi_1^{\text{ét}}(X_{\overline{\mathbf{F}}_p}) \neq 0$. There are Artin-Schreier curves like $y^p - y = x^d$; the map $(x, y) \mapsto x$ is a $\mathbf{Z}/p\mathbf{Z}$ -Galois cover.

Several Perspectives

Let X be a smooth projective curve over $k = \overline{\mathbf{F}}_p$, and B a finite set of points of X .

By default, all curves and covers are connected.

The following are equivalent:

- Finite index open subgroups of $\pi_1^{\text{ét}}(X - B)$;
- Finite étale covers of $X - B$;
- Finite branched covers of X ramified only over B ;
- Finite extensions of $k(X)$ ramified only over B .

Several Perspectives

Let X be a smooth projective curve over $k = \overline{\mathbb{F}}_p$, and B a finite set of points of X .

By default, all curves and covers are connected.

The following are equivalent:

- Finite index open subgroups of $\pi_1^{\text{ét}}(X - B)$;
- Finite étale covers of $X - B$;
- Finite branched covers of X ramified only over B ;
- Finite extensions of $k(X)$ ramified only over B .

The monodromy group of the cover is the Galois group of the normal closure of the field extension.

What is Known

X curve of genus g , $\#B = r$.

- Over \mathbf{C} , the fundamental group of a Riemann surface of genus g with r points removed is $\Gamma_{g,r}$, a free on $2g + r - 1$ generators. (“Topological Fundamental Group”)
- Let $p(G)$ be the subgroup of G generated by the p -Sylow subgroups.

Theorem (Harbater, Raynaud)

Over $\overline{\mathbf{F}}_p$, if $r > 0$ then G is the Galois group of a finite étale cover of $X - B$ if and only if $G/p(G)$ is generated by $2g + r - 1$ elements.

What is Known

X curve of genus g , $\#B = r$.

- Over \mathbf{C} , the fundamental group of a Riemann surface of genus g with r points removed is $\Gamma_{g,r}$, a free on $2g + r - 1$ generators. (“Topological Fundamental Group”)
- Let $p(G)$ be the subgroup of G generated by the p -Sylow subgroups.

Theorem (Harbater, Raynaud)

Over $\overline{\mathbf{F}}_p$, if $r > 0$ then G is the Galois group of a finite étale cover of $X - B$ if and only if $G/p(G)$ is generated by $2g + r - 1$ elements.

- The finite quotients of $\pi_1^{\text{ét}}(X - B)$ do not determine this pro-finite group.

Tame Ramification

X curve of genus g , $\#B = r$. $\Gamma_{g,r}$ free with $2g + r - 1$ generators

Theorem (Grothendieck)

- $\pi_1^{\text{\'et}}(X - B)^{(p')}$ and $\widehat{\Gamma}_{g,r}^{(p')}$ are isomorphic.

Tame Ramification

X curve of genus g , $\#B = r$. $\Gamma_{g,r}$ free with $2g + r - 1$ generators

Theorem (Grothendieck)

- $\pi_1^{\text{\'et}}(X - B)^{(p')}$ and $\widehat{\Gamma}_{g,r}^{(p')}$ are isomorphic.
- The tame fundamental group $\pi_1^{\text{tame}}(X - B)$ is a quotient of $\widehat{\Gamma}_{g,r}$.

Tame Ramification

X curve of genus g , $\#B = r$. $\Gamma_{g,r}$ free with $2g + r - 1$ generators

Theorem (Grothendieck)

- $\pi_1^{\text{ét}}(X - B)^{(p')}$ and $\widehat{\Gamma}_{g,r}^{(p')}$ are isomorphic.
- The tame fundamental group $\pi_1^{\text{tame}}(X - B)$ is a quotient of $\widehat{\Gamma}_{g,r}$.

A potentially manageable question:

Question

What are the tamely ramified covers of $X - B$?

Tamely Ramified Covers

Specialize to $X = \mathbf{P}^1$, $B = \{0, 1, \infty\}$.

- There is a G -Galois cover of $\mathbf{P}^1 - \{0, 1, \infty\}$ in characteristic zero if and only if G is generated by two elements.
- Which of these show up as Galois groups of tame covers in characteristic p ?

Tamely Ramified Covers

Specialize to $X = \mathbf{P}^1$, $B = \{0, 1, \infty\}$.

- There is a G -Galois cover of $\mathbf{P}^1 - \{0, 1, \infty\}$ in characteristic zero if and only if G is generated by two elements.
- Which of these show up as Galois groups of tame covers in characteristic p ?
- Strategy: take a G -Galois cover defined in characteristic zero, reduce it modulo p .

A Criterion for (Potentially) Good Reduction

Let G be a finite group generated by two elements.

Theorem (Raynaud, Obus)

Suppose G has **cyclic** p -Sylow subgroup. Let $K_0 = \text{Frac}(W(k))$, and K/K_0 be a finite extension of degree $e(K)$, where $e(K)$ is less than the number of conjugacy classes of order p in G . If $\pi : Y \rightarrow \mathbf{P}^1 - \{0, 1, \infty\}$ is a G -Galois cover defined over K , then π has potentially good reduction.

A Criterion for (Potentially) Good Reduction

Let G be a finite group generated by two elements.

Theorem (Raynaud, Obus)

Suppose G has **cyclic** p -Sylow subgroup. Let $K_0 = \text{Frac}(W(k))$, and K/K_0 be a finite extension of degree $e(K)$, where $e(K)$ is less than the number of conjugacy classes of order p in G . If $\pi : Y \rightarrow \mathbf{P}^1 - \{0, 1, \infty\}$ is a G -Galois cover defined over K , then π has potentially good reduction.

Example

Gives tamely ramified $\text{PGL}_m(\mathbf{F}_q)$ -covers in characteristic p for well-chosen m and q .

New Tamely Ramified Covers

Theorem

Fix a prime p , and let $k = \overline{\mathbb{F}}_p$. For infinitely many n , there exists a curve C over k and a branched Galois cover $\pi : C \rightarrow \mathbb{P}_k^1$ tamely ramified over three points and unramified elsewhere, whose Galois group isomorphic to the symmetric group S_n (and likewise for the alternating group A_n).

New Tamely Ramified Covers

Theorem

Fix a prime p , and let $k = \overline{\mathbb{F}}_p$. For infinitely many n , there exists a curve C over k and a branched Galois cover $\pi : C \rightarrow \mathbb{P}_k^1$ tamely ramified over three points and unramified elsewhere, whose Galois group isomorphic to the symmetric group S_n (and likewise for the alternating group A_n).

Strategy: construct cover from a map between moduli spaces

Moduli of Elliptic Curves with G -structure

Fix a finite group G generated by two elements; assume for simplicity that $Z(G) = 1$.

Definition

Let $\mathcal{M}(G)$ be the moduli space of elliptic curves with G -structure: an elliptic curve E together with a Galois cover of $E - \{\mathcal{O}\}$ with Galois group G .

Moduli of Elliptic Curves with G -structure

Fix a finite group G generated by two elements; assume for simplicity that $Z(G) = 1$.

Definition

Let $\mathcal{M}(G)$ be the moduli space of elliptic curves with G -structure: an elliptic curve E together with a Galois cover of $E - \{\mathcal{O}\}$ with Galois group G .

- If G is Abelian, a different formulation recovers modular curves with familiar level structures:
 $X(N)$ corresponds to $G = (\mathbb{Z}/n\mathbb{Z})^2$.
- This is naturally defined over $\mathbb{Z}[\frac{1}{|G|}]$.

Moduli of Elliptic Curves with G -structure

- Forgetful map $p : \mathcal{M}(G) \rightarrow \mathcal{M}(1)$ is finite étale.
- Over \mathbf{C} : get branched cover $M(G)_{\mathbf{C}} \rightarrow \mathbf{P}_{\mathbf{C}}^1$ ramified over $0, 1728, \infty$. It's easy to understand ramification.

Moduli of Elliptic Curves with G -structure

- Forgetful map $p : \mathcal{M}(G) \rightarrow \mathcal{M}(1)$ is finite étale.
- Over \mathbf{C} : get branched cover $M(G)_{\mathbf{C}} \rightarrow \mathbf{P}_{\mathbf{C}}^1$ ramified over $0, 1728, \infty$. It's easy to understand ramification.
- Interpretation of fibers over \mathbf{C} : $\text{Surj}(F_2, G) / \text{Inn}(G)$ with monodromy action of $\text{SL}_2(\mathbf{Z})$
- Experiments show: if $G = \text{PSL}_2(\mathbf{F}_{\ell})$, then there is a natural large orbit of size n where the monodromy action is S_n or A_n

Markoff Triples

Let X be the surface $x^2 + y^2 + z^2 - 3xyz = 0$. 3

- $X(\mathbb{Z})$: Markoff triples
- Markoff group Γ : permute coordinates,
 $(x, y, z) \mapsto (3yz - x, y, z) \dots$

Markoff Triples

Let X be the surface $x^2 + y^2 + z^2 - 3xyz = 0$. 3

- $X(\mathbb{Z})$: Markoff triples
- Markoff group Γ : permute coordinates,
 $(x, y, z) \mapsto (3yz - x, y, z) \dots$
- $X^*(\mathbf{F}_\ell) = X(\mathbf{F}_\ell) - \{(0, 0, 0)\}$
- Experimentally: $X^*(\mathbf{F}_\ell)$ is a single Γ -orbit, action factors through symmetric or alternating group

Proving Things

The following are closely linked:

- Monodromy on fibers of $M(\mathrm{PSL}_2(\mathbf{F}_\ell))_{\mathbf{C}} \rightarrow \mathbf{P}_{\mathbf{C}}^1$;
- Action of $\mathrm{SL}_2(\mathbf{Z})$ on $\mathrm{Surj}(F_2, \mathrm{PSL}_2(\mathbf{F}_\ell))/\mathrm{Inn}(\mathrm{PSL}_2(\mathbf{F}_\ell))$;
- Action of Γ on $X^*(\mathbf{F}_\ell)$.

Given $\phi : F_2 = \langle a, b \rangle \rightarrow \mathrm{PSL}_2(\mathbf{F}_\ell)$ in the “preferred component”,

$$(\mathrm{tr}\phi(a), \mathrm{tr}\phi(b), \mathrm{tr}\phi(ab)) \in X^*(\mathbf{F}_\ell)$$

Proving Things

The following are closely linked:

- Monodromy on fibers of $M(\mathrm{PSL}_2(\mathbf{F}_\ell))_{\mathbf{C}} \rightarrow \mathbf{P}_{\mathbf{C}}^1$;
- Action of $\mathrm{SL}_2(\mathbf{Z})$ on $\mathrm{Surj}(F_2, \mathrm{PSL}_2(\mathbf{F}_\ell)) / \mathrm{Inn}(\mathrm{PSL}_2(\mathbf{F}_\ell))$;
- Action of Γ on $X^*(\mathbf{F}_\ell)$.

Given $\phi : F_2 = \langle a, b \rangle \rightarrow \mathrm{PSL}_2(\mathbf{F}_\ell)$ in the “preferred component”,

$$(\mathrm{tr}\phi(a), \mathrm{tr}\phi(b), \mathrm{tr}\phi(ab)) \in X^*(\mathbf{F}_\ell)$$

- Bourgain, Gamburd, and Sarnak show: there is always a large Γ -orbit on $X^*(\mathbf{F}_\ell)$.
- Can adapt work of Meiri and Puder to see that: for infinitely many ℓ , Γ acts as symmetric or alternating group on this orbit.

Thank you.